

Developer Thriving:

The four factors that drive Software Developer
Productivity across Industries

Authors: Cat Hicks, PhD., Carol S. Lee, PhD., Morgan Ramsey
The Developer Success Lab | devsuccesslab.com

2023

Suggested citation: Hicks, C., Lee, C. S., Ramsey, M. Developer Thriving: The four factors that drive
Software Productivity across industries [research report]. The Developer Success Lab at Flow
(2023). [link]

https://devsuccesslab.com

Table of Contents
EXECUTIVE SUMMARY 4
FULL RESEARCH REPORT 8

Introducing a Framework for Developer Thriving 8
Table 1. 10

Research Implementation & Methods 10
Participant Consent & Privacy 11
Representation, Data Quality, and Designing for Quality of Response 12
Fig 1. Flowchart of participant drop out and final sample size. 12

Table 2. How we measured key questions on the quantitative survey 13
Creating our Quantitative Measures 13
Creating our Qualitative Measures 15

Qualitative Script Development 15
16
17
18

Table 3. Qualitative Research Participants
Fig. 2: A Summary of Quantitative Participant Demographics
Fig. 3: A Summary of Quantitative Participant Firmographics
Table 4. Average scores for Developer Thriving and Productivity, shown by
industry and engineering role

19

Study 1: Developer Thriving and Visibility create a holistic ecosystem that unlocks
Productivity 20

Are developers thriving? 20

Fig 5. Correlation matrix of the Developer Thriving Scale, Visibility and Value
Questionnaire, Healthy Metrics Use, and Perceived Productivity Rating.

Fig 4. Average scores of the Developer Thriving Scale’s factors 21

All correlations shown were statistically significant. 21
21
22
23
25
26
26

Testing how Developer Thriving, Metrics use, and Visibility lead to Productivity
Fig 6: Serial Mediation Model with standardized regression coefficients.

Fig 7: Developer Thriving scores shown in relation to Productivity, and Visibility
Table 5. The Developer Thriving Framework
Study 1 Summary

Table 6. Study 1 Recommendations
Study 2: How developers describe the impact of visibility on their motivation and
success 27

Qualitative Analysis 27
Qualitative Findings 28

Table 7. Qualitative Research Themes 28
Fig 8. The “visibility cycle” inside of an engineering organization as described
by IC developers and managers in Study 2 33

33
35

Study 2 Summary
Table 8. Study 2 Recommendations

Study 3. “Healthy metrics”: what we learned about how software teams
measured their work 36

Table 9. 37

2

Fig 9. Software rituals in which developers reported their teams using software
metrics. 39
Fig 10: Whose team uses software metrics by top engineering role types 39
Fig 11: Whose team uses software metrics, by top industries 40
Fig 12. Developers reported a range of use on the Metrics Diagnostic,
including four key “metrics pitfalls”

41

43Fig 13. Developers were strongly positive overall on the IMCW items.
Fig 14. Subgroup differences as shown in odds ratios: only Racially minoritized
developers had significantly higher odds of scoring high on the impact of
coding work measure. 44

Study 3 Summary: Moving towards “Healthy Metrics” 46
Table 10. Study 3 Recommendations 47

TAKE-AWAYS & CONCLUSION 48
Table 11. Selected examples of ways engineering organizations can lift or
lower the “virtuous cycles” of Developer Thriving. 50

REFERENCES 52
Supplemental Materials 58

APPENDIX A. Sample Participant Consent Form 58
APPENDIX B. Asking about Identity 59
APPENDIX C. Example Qualitative Script 62
APPENDIX D. Additional statistics 63

Overall Descriptives of Key Measures 64
Serial Mediation Model 65
IMCW Model 67

3

EXECUTIVE SUMMARY
What helps developers thrive?

● Understanding how engineering investment leads to business impact is a
critical challenge; organizations that succeed at this can maximize the value of
engineering work. Maintaining software development velocity, and sustaining
meaningful feedback loops between developer effort and impact, is central to
success for organizations that rely on software work. Because of this, both
understanding and then maintaining long-term developer productivity is a top
priority for leaders, engineering managers, and developers themselves.

● In this report, the Developer Success Lab at Flow shares what we’ve learned
about the key sociocognitive factors that lead to highly productive software
teams. With three research projects and 1200+ real-world software developers,
we used empirically validated factors from social science and software research
to create a framework for Developer Thriving and Visibility and Value, both of
which significantly predicted productivity. These factors are corroborated by
situated examples from qualitative interviews with developers and managers.
We also share what we’ve learned about how developers measure their
productivity, reporting on the use of software metrics and its impact.

● We include recommendations based on both large-scale quantitative research
and in-depth qualitative research, and key examples for how the factors in
Developer Thriving may show up inside of organizations.

To create new technologies, developers must collaborate well on complex, iterative,
and distributed code. Developers and their teams need to balance personal
productivity, project constraints, organizational context, and business impact
alongside pushing the boundaries on what code can do in the world. Against this
complexity, some estimates of the overall success rates of software projects claim that
the majority of software projects deliver late, deliver out of scope with planned
budget, and fail to drive business impact (Reel, 1999; Verner et al., 2008).

Nevertheless, developers work together in code and make progress every day.
Extensive research on how software engineers problem-solve in complex code paints
a much more optimistic picture of software work. Developers are highly motivated to
do cognitive knowledge work (e.g., Beecham et al., 2008), experts at triaging and
learning through failure (e.g., Petre, 2009), and successfully create technologies that
are interacted with by nearly every human on earth. Understanding this
problem-solving is key to maintaining this innovation.

4

The Developer Success Lab at Flow set out to study what factors underlie how
developers and their teams at work maintain productivity, work deeply and
collaboratively, and have real-world impact. This report summarizes three in-depth
research studies with software teams on how real-world developers and their teams
achieve success. Across quantitative data from 1282 developers, and rich qualitative
data from 15+ hours of conversation in interviews and focus groups, we share our
initial findings about how developers experience their working environments, how
experiences of learning culture, agency, motivation, and belonging impact developer
productivity, and the strategies that developers use to navigate these complex
environments.

We introduce a key concept that we believe is foundational to
software team success: Developer Thriving.
One of our key findings is that high-quality, sustainable software work is unlocked by
the structural elements of iterative, collaborative problem-solving that allow
developers to thrive. Drawing from important empirical research in human wellbeing,
learning, and achievement, we created an original measure of Developer Thriving: a
growth-oriented measure of developers’ environments that captures whether
developers have four key sociocognitive dynamics inside of their teams that enable
knowledge work. In our study, Developer Thriving significantly predicted developers’
productivity.

We introduce an important dimension that determines how software
teams see their work’s connection to business impact: Visibility &
Value.
We also developed a new and original measure for understanding the larger
organizational context around developers’ individual work: how much developers feel
that their work is visible to the right people (both teammates and leaders), and how
much it feels valued. We see this perception as a missing element that bridges the
gap between individual developer experience and how engineering organizations’
systemic choices about their teams change developer behavior. We call this concept
Visibility and Value, and it too was a significant predictor for both developers’
productivity and Developer Thriving.

We describe how software teams interact with software metrics, and
share the benefits of thoughtfully tracking parts of the coding
process for both teams and individuals.

5

We then turned to asking developers about measurement: how do software teams
think about tracking their progress, and do they see a benefit from it. While the use of
software metrics is reported relatively unevenly across software teams, we find that
bringing team-level metrics into rituals like sprint planning and project retrospectives
boosts Visibility and Developer Thriving. Crucially, we find that this benefit is unlocked
when measurement happens on the team level, ties directly to process and effort, and
is aligned with developers’ perceptions of how the organization values their work.

Finally, we explore these themes in rich, qualitative interviews and
focus groups.
Stories and insights directly from developers reinforced the Developer Thriving cycle,
and helped us understand how Visibility and healthy measurement was experienced
in real developers’ work lives. Developers shared key themes around what was
working well and what wasn’t in their environments, and we surfaced examples of all
key constructs in Developer Thriving, along with barriers and friction points that
disrupt these good problem-solving elements. In particular, developers noted that
organizational transparency and a reliable expectation of authentic recognition
helped motivate their problem-solving and ensure they were solving the right things.
Managers shared stories of advocating for developers, and also the frictions in
frequently feeling overwhelmed or solely responsible for making their teams’ work
visible.

6

Selected Recommendations

Finding Recommendation

Developer Thriving unlocks
productivity across roles and
industries.

Developers should be mindful about how they support their
teammates’ learning, belonging, and other key factors in crucial
collaboration moments such as code reviews and team
retrospectives

Managers seeking to increase productivity should diagnose lacks
of and advocate for investments in Developer Thriving factors

Developers benefit when their
work is seen and recognized
by their teammates,
managers, and organization,
but struggle to find and
maintain this visibility.

Managers should commit time to learning reports as individual
people; well enough to understand how to effectively advocate on
their behalf

Managers should seek out opportunities to credit developers
directly in business impact, such as representation in demos, and
recognition in launches

Leaders should diagnose whether there are “visibility gaps” inside
of their engineering organizations, paying special attention to
teams or types of engineering work that do not get shared broadly

Organizations should invest in systems that explicitly recognize
and reward teams for the technical progress they make,
particularly work that was unexpectedly challenging, required
new skills, or fixed long-standing problems

Using software metrics in a
thoughtful and healthy way
can increase visibility into
developers’ technical work.

Developers should integrate tracking their own code processes in
a way that helps them contextualize work over time (e.g., the
balance of code reviews they do, the types of tickets consuming
time, the cadence of work) into a reflective practice. Avoid using a
single measure, and start with documenting success and effort to
reveal “easy wins” for increasing recognition of technical progress,
and justifying learning investments

Managers should consider bringing reflection on over-time
metrics into 1x1 conversations with developers and using overall
team metrics during planning processes. Managers should
highlight and explain when success metrics need to change for a
different context

Organizations should assess whether engineering effort is
evaluated with metrics that drive change and decisions, and
ensure that long-term impact is tracked over time and across
engineering projects

7

FULL RESEARCH REPORT

Introducing a Framework for Developer Thriving

To study productivity and success with real-world developers, we took inspiration from the
science of developer productivity. Recent waves of software research argue for a new
grounding in human-centered, evidence-based science by 1) learning from foundational
evidence about what truly improves problem-solving during coding and software work, 2)
doing research directly on the real-world experiences of modern software teams, and 3)
avoiding major misconceptions in measuring productivity, such as defining developer
productivity only as crude output measures such as lines of code, or setting a single metric
goal and using it as a threshold evaluate all software work regardless of differing contexts and
needs (e.g., Bouwers et al., 2012; 2013; Forsgren et al., 2021; Grieler et al., 2022; Sadowski, &
Zimmermann, 2019; Storey et al., 2021; Storey, Houck, & Zimmermann, 2022).

We believe that this grounding provides a way out of the two measurement traps that
leaders experience when attempting to increase organizational developer productivity: 1)
fixating on surface definitions of productivity and measuring and incentivizing the wrong
things, or 2) becoming paralyzed by complexity and context and measuring and incentivizing
nothing.

The SPACE framework, which characterizes developer productivity in terms of satisfaction and
wellbeing, performance, activity, communication, and efficiency is one impactful recent
summary (Forsgren et al., 2021; Storey et al., 2021). The SPACE framework provides an example
of systematically broadening “productivity” definitions with dimensions such as job
satisfaction. Nevertheless, while the SPACE framework includes satisfaction as a key piece of
productivity, understanding what real developer satisfaction is remains an important
question. Developers, managers, and engineering may still struggle to understand how to
begin breaking down and diagnosing how developers’ sociocognitive experiences connect to
more robust cycles of productivity for teams.

Developer Thriving builds on the known connection between developer satisfaction and
productivity, but helps to answer what drives satisfaction in the first place. In creating this
construct, we took a survey of evidence across rich research areas in human achievement and
wellbeing. From this, we developed four original measures to capture key elements of
developer experience. Each element draws on robust theories which have proven directly
impactful to human problem-solving and achievement, and adapts them to software teams
(Table 1). These elements are agency, motivation & self-efficacy, learning culture, and support
& belonging. A “thriving” software team has each element in their environment.

8

We believe the sociocognitive elements that create Developer Thriving are
impactful because they create “virtuous cycles”: positive beliefs,
perceptions, and expectations about code work and problem solving.

These cycles work to reinforce developers’ sense of progress and problem-solving even and
especially when developers encounter difficulty, friction, and failure. Across intervention
science in human behavior, these positive metacognitive beliefs, perceptions, and
environmental factors have been found to drive human achievement change (e.g., Yeagar et
al., 2013). Organizations can either enhance or subvert these important cycles: when teams
and organizations put effort into creating a positive problem-solving culture, it sustains
long-term achievement, iterative improvement, and reflective, collaborative problem-solving.

The “virtuous cycles” unlocked by a culture of Developer Thriving provide the most effective
way out of the two measurement traps in “developer productivity.” Good problem-solving
elements do scale across contexts, and meaningfully lead to productivity. Learning to see
these cycles gives engineering leaders and software teams a place to begin diagnosing the
barriers to thriving, and make visible the most valuable practices which protect it. In the
following three studies, we’ll test the impact of Developer Thriving and Visibility, explore how
managers’ and developers’ experiences inside of organizations shape their success and
productivity, and share what we’ve learned about how healthy measurement can benefit
software teams.

9

The Behavioral Science behind Developer Thriving

A developer is: Billett, 2011
1) able to voice disagreement with team Gobeli et al., 1998

Agency definitions of success Hicks, 2022
2) has a voice in how their contributions are Meyer et al., 2019
measured

A developer is: Bandura & Adams, 1977
1) motivated when working on code at work Kim et al., 2023
2) can see tangible progress most of the time Robinson et al., 2019
3) is working on the type of code work they Sherer, 1982Motivation & Self-Efficacy want to work on
4) is confident that even when working in code
is unexpectedly difficult, they will solve their
problems

A developer is: Hicks, 2022
Learning Culture 1) learning new skills as a developer Scott & Ghinea, 2013

2) able to share the things they learn at work Luxton-Reilly et al., 2018

A developer is: Anderson-Butcher & Conroy,
1) supported to grow, learn, and make mistakes 2002

Support & Belonging by their team Pardede, Gausel, & Høie, 2021
2) agrees they are accepted for who they are by Rattan et al., 2018
their team Wilson et al., 2010

Table 1.

Research Implementation & Methods

The Developer Success Lab takes a mixed-methods approach to our research. Therefore, our
approach was both quantitative (a large-scale survey of 1200+ developers across 12 industries)
and qualitative (in-depth interviews and focus groups with 19 developers, ranging from junior
ICs to managers, and representing diverse characteristics, backgrounds, and engineering
areas). Combining these sources of insight allows us to test meaningful evidence about
developer experience at scale, while also surfacing recommendations and lived experience
directly from developers on their own thriving, barriers, and possibilities.

For our quantitative research, we opened an online survey to individual contributor (ICs)
developers and software engineers responsible for technical code work in their role. Our
survey was advertised publicly on various social media (e.g. twitter, facebook, mastodon,
linkedin, and reddit), from researchers’ personal social media accounts, and via direct emails
to professional listservs of interest to developers. Our survey was also advertised inside of the
Pluralsight Skills platform, embedded in developer-relevant content pages such as internal
learning programs, and inside of the Pluralsight Flow platform, shown as a banner
advertisement to professional developer users. In all cases, this survey advertisement was
optional and not connected to user data on either of these platforms. See Appendix B for a
copy of our consent form, which was provided on the initial survey eligibility page.

10

For our qualitative research, we recruited participants from two sources: internally recruiting
full-time software developers at Pluralsight (interviews), and external recruiting from
participants who had opted in to a follow-up after our survey (focus groups). For internal
participants, we conducted 1-hour long semi-structured interviews focused around
understanding how developers defined success, productivity, and the barriers they
experienced to both. From these initial internal interviews, we identified major key themes,
which we used to create semi-structured interview scripts for a series of 1-hour long focus
groups with individual contributors and software team managers.

Key Research Questions

How does visibility impact productivity? How does visibility impact team-wide success? How
do developers measure their work, and what benefits do they see from thoughtful
measurement?

What organizational factors and experiences help to motivate developers when work is
difficult? How do developers make a connection between their engineering effort and
business impact?

How do developers define success? What elements do they think matter most to successful
software work, and what do developers think their managers and teams see as successful?

Participant Consent & Privacy
In our research, we strive to follow best practices for social science research and human
behavior data collection. Two key values for the Developer Success Lab are to provide
informed consent to all participants prior to their participation, and to take precautionary
measures to protect participants’ privacy.

For example, we 1) restrict access to all raw participant data to Developer Success Lab
researchers 2) anonymize across findings so that specific names, teams, and contexts aren’t
identifiable 3) only share quantitative data insights in aggregate 4) emphasize in multiple
points during data collection that participants should only share what they feel comfortable
sharing, and 5) maintain a “continual consent” practice with participants, meaning that
participants can opt-out of research at any time during their participation, and 6) do not treat
opt-out of identity disclosures as an exclusion criteria, meaning that we analyze data in a way
that ensures participants who opt-out of sharing personal information such as demographics
are still able to participate in other research questions, where possible.

This information was communicated to our participants through a consent form shared at the
beginning of the quantitative survey, via email several days prior to the qualitative interviews
and focus groups, and in verbal communication from researchers during our qualitative
research.

11

Representation, Data Quality, and Designing for Quality of Response

Our quantitative research recruited 1409 individual contributor developers. Of the 1409
participants, 121 did not move past the first 2 questions of the survey and were thus dropped
from our sample. Of the remaining 1288 participants, six were removed for writing
identity-based discriminatory responses in our open text demographic fields. Our final sample
consisted of 1282 participants (Figure 1). As a token of appreciation for participation, our
research team made a donation to an open source software nonprofit, chosen based on
participant voting.

Fig 1. Flowchart of participant drop out and final sample size.

Throughout the survey, participants were allowed to leave any question blank. In order to
center participant consent and opt-in, identity-based questions were also marked with
[OPTIONAL] in the item description, and “prefer not to respond” was given as an explicit
option. This resulted in a significant drop-off of participant response to many of the identity
and firmographic questions, which is expected in this survey design. To reduce the risk of bots
and multiple responses, we enabled bot detection and security scan monitoring on our
survey.

In order to reduce response biases within-survey, we used a semi-randomized survey design.
All participants answered key construct measures before being asked to answer measures
that may influence their responses. For example, to avoid stereotype threat, participants rated
their productivity before being asked to answer any questions about demographic
characteristics, or about their sense of belonging (Spencer, Steele, & Quinn, 1999; Steele &
Aronson, 1995). Within the key construct measures, the order of presentation was randomized
to control for order effects.

During our qualitative research, participants were allowed to not answer questions, or to leave
the conversation at any time. Researchers prompted any confusion, hesitation, or
non-response with clarifying support such as, “there are no right or wrong answers.” All
qualitative participants participated in the full time of the research session, and none
withdrew any content from their transcripts afterward.

12

Quantitative Measures

Construct What it measured Response format

An individual developer’s productivity over the last Rating: 1-5 Likert scale
Perceived Productivity Rating (PPR) month (“Not at all Productive” -

“Extremely Productive”)

Whether an individual developer reported that their Categorical: Yes, No,Team Metrics Use (TMU).
team used software metrics Sometimes

An original measure of team metrics use and the Rating: 1-3 Likert scale
extent to which developers agree that their teams are (“Yes”, “Sometimes”, “No”)Healthy Metrics Use (HMU)

and a binary scale (“Yes”,measuring the “right” things.
“No”). Scores averaged.

An original measure of four primary factors that we Rating: 1-5 Likert scale.
propose as important to developer thriving, drawing Scores averaged.

Developer Thriving Scale (DTS) from key research in wellbeing, motivation, and
learning sciences: motivation, belonging, learning
culture, and agency

An original measure of perceived visibility and value of Rating: 1-5 Likert scale.
Visibility and Value Questionnaire an individual developer’s technical work, visibility by Scores averaged.
(VVQ) teammates and by manager, and sense of value

overall.

Impact of Measuring Code Work
(IMCW)

An original measure of how developers agree with the Rating: 1-5 Likert scale.
usefulness of software metrics in 1) helping a team to Scores averaged.
work better, such as helping with trade-offs in decision
making and 2) helping an individual to work better,
such as understanding one’s own productivity 4)
agreement that tracking & quantifying coding work
increases teammates’ & manager’s visibility into a
developers’ technical work, and 5) the progress of
technical work overall

Items adapted from Wallace & Sheetz (2014)

Table 2. How we measured key questions on the quantitative survey

Creating our Quantitative Measures

Throughout the quantitative measures on this survey, participants answered using a Likert
scale. Unless otherwise indicated (see Table 2), the scale included a neutral midpoint; scores
greater than 3 indicate agreement, while scores less than 3 indicate disagreement. Where
multiple items are used in a subscale, scores were averaged.

Perceived Productivity Rating (PPR). There is no standard measure for developer productivity
(Sadowski & Zimmerman, 2009) and developers define productivity in multiple ways; software
research has therefore frequently used self-report ratings of productivity (Meyer et al., 2017). To
operationalize this complex concept, we also chose to ask developers to rate their own
productivity over a recent period of time. This approach allows us to let developers summarize
across their complex contexts, different industry paces of work, and working environments. In
our study, the PPR is a self-report, single-item measure adapted from a similar rating utilized

13

by Cheng and colleagues (2022). In keeping with our aim of reducing within-survey response
effects, this question was shown first to reduce biases that might arise from respondents’
reflecting on questions about belonging, measurement and software metrics.

Healthy Metrics Use (HMU). Healthy metrics use was operationalized as a two-item composite
rating created for the purpose of this study. The first item asked participants to report their
team’s use of metrics. The second item asked participants to report if they believed their team
used the “right” metrics for their team and agreed that “they measure the right things.” The
two scores were averaged to create a single composite score.

Developer Thriving Scale (DTS). The DTS is a ten-item measure created for the purpose of this
study, abbreviated in order to be accessible to participants at scale in an applied research
setting (see Appendix D for more details). The measure draws from models of health and
psychology to identify four primary factors of satisfaction: motivation, belonging, learning
culture, and agency. The items for each factor are adapted from empirically validated
psychological measures of these constructs, which we present in the section below (Table 5).
The measure had good internal consistency in our sample (𝛼 = .86).

Visibility and Value Questionnaire (VVQ). The VVQ is a three-item measure created for the
purpose of this study. The measure draws from previous research indicating that recognizing
and valuing employees’ work predicts employee satisfaction and asks respondents to rate the
extent to which they believe their technical work is visible and valued by teammates and
managers. The measure had good internal consistency in our sample (𝛼 = .83).

Impact of Measuring Code Work (IMCW). Across five items, participants rated the perceived
usefulness and impact of software metrics, defined as 1) helping them understand
teammates’ work and make trade-off decisions, and 2) helping them understand their own
productivity 3) increasing visibility and 4) helping them make progress in technical work. This
measure was only shown to the subset of participants who had indicated they sometimes or
always used either team or individual software metrics.

Demographics & Firmographics
Participants could choose to provide information on their team size, team type, industry,
organization size, engineering area, and percent of time spent writing code. Participants also
could choose to provide information on their years of experience, where they learned to code,
gender identity, sexual orientation, race, education, and country of residence. The purpose of
these items was to accurately represent our sample, as well as to control for any significant
effects of specific demographic characteristics on our primary variables of interest.

14

Creating our Qualitative Measures

Qualitative Script Development

Qualitative interview scripts were designed with feedback from internal software developer
stakeholders and designed in conjunction with our survey items.
The sequence of questions in our script was also intentionally designed. We began our
discussion by asking broad questions around definitions to better understand developers’
initial descriptions of “success.” Next, we probed deeper into how developers understood the
path to success operating inside of their organizations. We asked participants to reflect on
moments of collaboration, friction, or doubt, and how peers and/or managers served as
barriers or bridges to achieving that success. We further unpacked these instances by asking
developers for examples of feeling valued, appreciated, or understood during those
collaborations. We wanted to see if these moments had an impact on the participants’
workflow, motivation, or their definition of “success.”

For the focus groups, we aimed to gather participants in groups matched in individual
contributor or manager roles and years in role (see Table 3 for a summary of all qualitative
participants). Previous research shows that when focus group participants have shared
characteristics, they are more likely to have shared experiences, which can increase
experiences of comfort, validation, and belonging. This subsequently increases participant
openness and experiences of safety (Roller & Lavrakas, 2015). We also aimed for group sizes of
4 or fewer participants. This was to combat biases that are more likely to occur in larger
groups of people, such as group-think or one person dominating the conversation. Two
researchers were present in each group; one to primarily take notes and the other to lead the
discussion. We found that the 2:4 ratio was large enough to allow the participants space to
freely converse amongst themselves, but small enough for the researchers to guide the
conversation or engage individual participants who may have been less vocal. However, in
Focus Group 3, only one participant (P6) was available on the morning of the session;
therefore this session was treated as a semi-structured individual interview, using the same
script as the other focus groups.

15

Qualitative Participants

Demographics Firmographics

Focus Group 1

P1 Male, South/Southeast Asian Individual Contributor, Full-stack developer, 3-5 years in
role, Media/Entertainment

P2 Male, East Asian Individual Contributor, Backend developer, 3-5 years in
role, Technology

P3 Male, South/Southeast Asian Manager, Backend/Database admin, 3-5 years in role,
Financial Services

Focus Group 2

P4 Male, chose not to disclose further
demographics

Manager, Full-stack developer, 3-5 years in role,
Retail/e-Commerce

P5 Male, White Manager/Leader, 10+ years in role, Technology

Focus Group 3

P6 Male, White Individual Contributor, Backend developer, 0-1 years in role,
Media/Entertainment

Interviews (9 participants). For internal participant confidentiality, fewer demographics were surveyed in our interviews.

Senior Manager (1)

5 Men
4 Women

8 US
1 India

Principal Software Engineer (2)
Senior Software Engineer (1)

Software Engineer (4)
Contractor (1)

Table 3. Qualitative Research Participants

16

 Fig. 2: A Summary of Quantitative Participant Demographics

17

 Fig. 3: A Summary of Quantitative Participant Firmographics

18

The Developer Thriving Scale and Productivity
Average scores shown by role and industry. Subgroups smaller than 3 were excluded.

Average Developer Average Perceived
Thriving Scale Score Productivity Rating

Technology (n = 249)

Backend (n = 84) 4.15 3.55

Frontend (n = 24) 4.36 2.67

Full Stack (n = 91) 4.29 3.55

Financial Services (n = 153)

Backend (n = 63) 4.28 3.61

Full Stack (n = 56) 4.26 3.64

Retail/ Consumer/ e-Commerce (n = 43)

Backend (n = 16) 3.90 4.00

Full Stack (n = 18) 4.41 3.50

Government (n = 41)

Backend (n = 8) 4.06 3.33

Frontend (n = 3) 3.92 3.00

Full Stack (n = 23) 4.05 3.27

Unreported (n = 650) 4.32 3.42

Table 4. Average scores for Developer Thriving and Productivity, shown by industry and
engineering role

19

Study 1: Developer Thriving and Visibility create a holistic
ecosystem that unlocks Productivity

Study 1 High Level Summary

Developer Thriving (developers’ overall ratings of their agency, motivation, learning
culture, and sense of belonging) was the strongest predictor of Productivity.

In a serial mediation model, we found that Visibility & Value indirectly increased
Productivity by directly increasing Developer Thriving.

Additionally, Healthy Team Metrics Use indirectly increased both Developer Thriving
and Productivity, by directly increasing Visibility and Value.

Are developers thriving?
When looking at our entire analytic sample (N = 1282), we found that developers reported
positive levels of agency, belonging, motivation, and learning culture (Table 4). Overall,
developers scored the highest on learning culture and the lowest on agency. Taken together,
the findings show that developers are thriving overall, but that there may be a slight
imbalance between the factors of developer thriving, though this difference was not
statistically significant.

One concern with examining these constructs might be if our sample reported systematically
different scores on Developer Thriving constructs because of differences in engineering work
or context–for example, perhaps developers score very highly in agency in one industry, but
not another. However, we found no large patterns of difference in developers’ thriving scores
by years of coding, type of engineering role, and industry, indicating that the measures in
developer thriving can be used across diverse types of engineering work and different
organizations. Then, we conducted a correlation analysis and found that thriving scores,
developers’ productivity scores, their visibility, and healthy metrics use were all positively
associated (Fig 5). In particular, Developer Thriving and whether developers believed their
work was visible to and valued by managers and teammates was strongly correlated, at .73. .
This provided initial evidence that developer thriving, healthy metrics use, and visibility
impact how real developers work, and that these factors positively reinforce each other inside
of developers’ workplaces. Productivity is highly multifaceted, and driven by many factors
beyond the individual–it is therefore not surprising that the correlations between Productivity

20

and the other factors are not as large, but these relationships remained statistically
significantly positive and noteworthy.

Fig 4. Average scores of the Developer Thriving Scale’s factors

Fig 5. Correlation matrix of the Developer Thriving Scale, Visibility and Value
Questionnaire, Healthy Metrics Use, and Perceived Productivity Rating.
All correlations shown were statistically significant.

Testing how Developer Thriving, Metrics use, and Visibility lead to Productivity
From previous research (e.g. Fagerholm & Münch, 2012; Forsgren et al., 2021; Mikkonen, 2016;
Morales et al., 2019; Storey et al., 2021), we know that a positive developer experience and
increasing developer satisfaction are among the best ways to increase developer productivity.
With our study, we wanted to expand the concept of satisfaction and look at whether the
factors in developer thriving impact productivity. We also wanted to see if implementing
team-level tools and processes such as healthy metrics and increased visibility could improve

21

developer thriving and productivity, even after controlling for factors like years of experience
and time spent coding.

To ask these questions, we conducted a serial mediation conditional process analysis. This
analysis allows us to look at multiple relationships between variables at once and test a
proposed path towards an outcome (in this case, developer productivity). This model allows
us to explore evidence for both direct and indirect effects. In mediation analyses, direct
effects refer to the effect that a predictor variable has on an outcome variable. Indirect effects
refer to the effect that a predictor variable has on an outcome variable by working through a
mediating variable (mediator; Hayes, 2022).

Fig 6: Serial Mediation Model with standardized regression coefficients.

22

Fig 7: Developer Thriving scores shown in relation to Productivity, and Visibility

Our model finds evidence that across these factors, improving Developer Thriving was the
most effective path in this model to improving productivity (Fig 6-7). This finding supports
previous software and employee wellbeing research that highlights satisfaction as the

23

strongest predictor of productivity (e.g. Hackman & Oldman, 1975; Storey et al., 2021).
Importantly, our model also expands on this connection to highlight visibility as the key to not
only directly increasing developer thriving, but also boosting the effect of thriving on
developer productivity.

That is, developers need thriving and all its elements inside of their immediate
problem-solving environment, but they also need to believe that their individual productivity
will go beyond their teams. As one senior, tech lead developer expressed in our qualitative
interviews, “peak success is [code is] written in a way that is composable [and] easy to digest
for other developers, you know, potentially has documentation around it.” For this technical
expert, true “success” in software work is not accomplished until the loop of visibility is
completed. Our Visibility & Value construct is a step towards naming and measuring the
missing piece that helps explain an important connection between individual developer
productivity, and how the organization’s valuing and recognition of it flows back down to
software teams.

The unique benefit of both expecting and planning for visibility, and getting feedback from a
visibility cycle, echoes scientific evidence around human wellbeing, health sciences, and
organizational psychology. For example, research on behavioral change in healthcare settings
highlights the value created from recognition and visibility as one of the strongest predictors
of behavioral engagement, performance, and productivity of both individuals and team
members (Dawson, Mullan, & Sainsbury, 2015; Johnston & White, 2003; Stecker, McGovern, &
Herr, 2012; O’Flaherty et al., 2022). This impact on developer motivation was a key theme
underlined by both individual contributor developers in our qualitative research, who describe
expecting and anticipating moments of recognition as key motivators, and by managers,
who describe a pivotal responsibility of making their team’s work visible. In Study 2, we dive
more deeply into this experience.

Increased measurement leading to positive outcomes echoes a significant body of research in
the clinical and behavioral sciences, which indicates that we tend to forget or lack awareness
of the amount of work we have done, leading us to devalue and minimize our progress.
Tracking behavioral and psychological processes has been shown to mitigate this effect by
providing us concrete evidence of our progress and accomplishments. Having this evidence
not only increases mindful attention and awareness, but also increases our sense of value and
mastery over our work, increases empathy and self-compassion, boosts coping abilities and
distress tolerance, empowers us to recognize and set boundaries, and drives behavioral
engagement for both groups and individuals (Bornstein, Hamilton, & Bornstein, 1986; Cohen
et al., 2013; Ehlers et al., 2003; Foster et al., 1999; Kavanagh et al., 1999; Korotitsch & Nelson-Gray,
1999; Jason, 1975; Lambert et al., 2001; Latner & Wilsom, 2002). And with developers specifically,
research has found that self-reflection in a repeated cadence increased developers’ awareness
of their habits and led to positive behavior change for both output and wellbeing (Meyer et al.,
2019). In Study 3, we dive more deeply into how developers report their teams’ measurement
practices.

24

Developer Thriving in Qualitative Research

A developer is: “An environment where you know

1) able to voice Billett, 2011 [speaking up is] encouraged makes you

Agency disagreement with team
definitions of success

Gobeli et al., 1998
Hicks, 2022

want to chime in if you're anticipating
something, or think that maybe another
direction [should be explored] definitely

2) has a voice in how their Meyer et al., 2019 helps”
contributions are measured - IC Participant, Focus groups

Motivation &
Self-Efficacy

A developer is:
1) motivated when working
on code at work
2) can see tangible progress
most of the time
3) is working on the type of
code work they want to
work on
4) is confident that even
when working in code is
unexpectedly difficult, they
will solve their problems

Bandura & Adams,
1977
Kim et al., 2023
Robinson et al., 2019
Sherer, 1982

“I know for me and some of the
engineers that I have managed, it
comes down to ‘are you able to have an
impact on the product…the
company…have you been able to drive
that forward?”
- Manager Participant, Focus groups

"[I want] recognition that I'm a good
problem-solver...that I'm given problems
to solve not given solutions and told to
implement them. That's where you
move toward [technical leadership]”
- IC Participant, Interviews

Learning Culture

A developer is:
1) learning new skills as a
developer

Hicks, 2022
Scott & Ghinea, 2013
Luxton-Reilly et al.,

2) able to share the things 2018
they learn at work

“Being an engineer it's always about
growth. Your job is to do the job and to
learn and grow because you're going to
have to be able to take on more
challenges, and in order to grow as a
leader. It’s a never ending cycle unless
you're planning on being stagnant” - IC
Participant, Interviews

"Having that time to learn gave me
greater confidence as I moved into the
task of actually writing the code...and I
think ultimately allowed me to be more
successful”
- IC Participant, Interviews

A developer is:
1) supported to grow, learn,
and make mistakes by theirSupport &

Belonging team
2) agrees they are accepted
for who they are by their
team

Anderson-Butcher &
Conroy, 2002
Pardede, Gausel, &
Høie, 2021
Rattan et al., 2018
Wilson et al., 2010

"It's very valuable to be seen by a
manager [as] an existing human being.
I'm not a robot…I'm a finite human
being and I need a break … because it's
wearing me out...my manager's like
yeah...thanks for saying [it's not
working]"
- IC Participant, Interviews

“I feel safe when ideas and contributions
are valued equally.. whether it's an
architect, person that's been at the
company for like 15 years, and built the
whole thing, or some intern that just
started. I feel like good ideas can really
come from anywhere”
- IC Participant, Focus Group

Table 5. The Developer Thriving Framework

25

Study 1 Summary

Overall, we find evidence that supports describing developer productivity as an emergent
result of a holistic ecosystem. This ecosystem includes 1) the structural elements of Developer
Thriving that support good problem-solving on software teams and for individuals 2) a culture
of recognition and connected visibility for software work between teams, and throughout the
engineering organization 3) the right tools and processes to facilitate Thriving and Visibility,
such as healthy metrics. In Table 5, we again summarize the framework of Developer Thriving,
along with example quotes from our qualitative research for each construct. The following
sections dive more deeply into 1) this qualitative research, specifically looking at how
developers describe visibility, and 2) what we’ve learned about healthy metrics.

Recommendations from Study 1

Finding Recommendation Potential Impact

Developer
Thriving is the
strongest
predictor of
productivity

Developers should be aware of whether they are
supporting their teammates’ learning, belonging, and
other key factors in crucial collaboration moments such
as code reviews and team retrospectives

Managers seeking to increase productivity should
diagnose possible gaps in Developer Thriving elements
on their teams, documenting baselines and advocating
for investments in Developer Thriving factors

Organizations should commit to monitoring how
engineering functions are achieving Developer Thriving
between and across teams, considering factors such as
enough learning time, strong supportive cultures, the
opportunity to give feedback, and recognition for effort
work and difficult problem-solving.

⬆Developer
Experience
⬆Code velocity
⬇Problem-solving
roadblocks

Developers
benefit when
their work is
seen and
recognized by
teammates,
managers, and
the organization.

Leaders should diagnose whether there are “visibility
gaps” inside of their engineering organizations, paying
special attention to teams or types of engineering work
that do not get shared broadly

Leaders and Managers should assess whether
engineering effort is evaluated with metrics that drive
change and decisions, and ensure that long-term
impact is tracked over time and across engineering
projects

Organizations should invest in systems that explicitly
recognize and reward teams for the technical progress
they make, particularly work that was unexpectedly
challenging, required new skills, or fixed long-standing
problems

⬆Employee
Satisfaction
⬆Employee Retention
⬇ Planning Time

Table 6. Study 1 Recommendations

26

Study 2: How developers describe the impact of visibility on their
motivation and success

Study 2 High Level Summary

Managers and ICs both shared multiple examples of the importance of tying the
effort work of engineering to the impact on the real world.

One key theme was a gap of understanding between the work engineers know
they need to do, and the real business impact. Many managers and senior
engineers spoke of unrelenting pressure to do translation work between
engineering investment and business impact.

An important counterpoint to “visibility” arose as a subtheme: when developers felt
that their work was less understood by their organization, they spoke to the
importance of protecting focus time and “real work.”

In Study 2, we present a qualitative investigation across interviews and focus groups where
developers shared their definitions of success, experiences with complex software work, and
reflections on barriers. For the qualitative study, we first conducted 1) in-depth individual
interviews with 9 developers from within Pluralsight, and then built on these initial
conversations to create a deeper script for 2) three hour-long focus groups with 6 developers
from outside organizations. This two-part process allowed us to iterate our investigation as we
began to identify the importance of “visibility” to better understanding developer
productivity.

Qualitative research is necessarily open-ended; we created a semi-structured interview script
for all sessions, but participants are invited to share their experiences naturally. This
exploratory approach allows researchers to follow the themes that are the most important to
participants, and to adapt the question script in response to what participants find most
important to share. A sample of our qualitative scripts can be found in Appendix C.

Qualitative Analysis

To analyze across our interview and focus group conversations, we used thematic analysis
(Braun & Clarke, 2006). Thematic analysis focuses on examining every conversational
statement made by individuals across our interviews and focus groups, and categorizing
them into an overarching “theme” which the specific example illustrates. Themes are meant
to represent large patterns in participants’ experiences, which capture an important lens on

27

the research topic. These themes are often overlapping, and participants may speak to more
than one theme at a time.

Themes and subthemes across all sessions were identified in collaborative qualitative coding
sessions with three researchers, and inter-rater agreement was achieved for each major
theme. While not every theme was mentioned by every participant, in order to qualify as a
major theme, a topic had to be mentioned by at least four out of six focus group participants,
or seven out of nine interview participants.

Qualitative Findings

We identified 3 major themes relating specifically to the work of making engineering effort
visible (Table 7).

Making Engineering Visible: Top Themes

Theme 1
Visibility impacts individual

motivation

Theme 2 Visibility impacts business
decisions and goals

Theme 3 Visibility is generated
through advocacy, but good

advocacy relies on careful
understanding of individuals

“...I would be more willing to pick up something again that
was buggy or stuck because I know that I am being
appreciated for it.”
- IC Participant, Focus Groups

“As leaders, you're not necessarily in the weeds…but the
very minute details actually do matter…giving [leaders]
more information is valuable so they know how to kind of
navigate those nuances.”
- Manager Participant, Focus Group

“… there is essentially a huge set of internal tools and stuff
which never really see the light of day….that’s the role of
the tech lead [or manager] …to create the visibility that ‘I
have like 2 or 3 folks on my team. They're super talented…
just because they're not doing [feature] work doesn't
mean that they're not contributing to the
business…[making that visible is] a huge responsibility.”
- Manager Participant, Focus Groups

Table 7. Qualitative Research Themes

Theme 1: Visibility impacts individual motivation. Providing transparency into an IC’s
accomplishments to the broader organization strengthened a developer’s self-confidence
and thus motivation. In our conversations with Developers, many developers felt that the
more visible they were to the organization, the more motivated they felt to do the work.
Managers were essential to the creation of two forms of visibility, first “bottom-up,”
communicating engineering effort to organizations, and the second, “top-down,” redirecting
and steering engineering work and energy in response to business priority. Examples of the
first visibility were especially impactful when developers knew their progress was directly

28

shared with leaders, and when they felt recognized for conquering truly difficult work and the
seemingly “invisible” effort behind impact.

“I would be more motivated if someone said, “oh, wow! Nobody had gotten it
done, that’s so amazing”. I would be more willing to pick up something again that
was buggy or stuck because I know that I am being appreciated for it, and
someone is looking at it.”
- IC Participant, Focus Groups

“[in a feature demo] the credit was always given [to me as the engineer] and I
think that gave me a huge sense of not only like ownership, but it's also quite
empowering [...] because you know the end user of this product.”
-IC Participant, Focus Groups

“If you’re going to ask a developer to do something, you have to tell them why
they're doing such a thing [and] what the bigger picture is. It’s easy to say exactly
what [impact the whole group will have], but it's really difficult to get people
motivated to do [their individual task]...that’s why giving context is really
important.”
- Manager Participant, Focus Group

“...giving credit where it's due at the right time, like a showcase, is huge.”
- Manager Participant Focus Groups

In our conversations, managers also recognized visibility as a key component to motivation,
and emphasized that these cycles of recognition often needed to come before explicit
accomplishments.

“Giving visibility early on as developers are learning and making sure that others
are actually seeing and celebrating that growth is a very, very key piece of that
puzzle.”
- Manager Participant, Focus Groups

“As leaders, you're not necessarily in like in the weeds…but the very minute
specific details actually do matter and play a big role when you're finally putting
something out [even though it may not have been] visible to you as a leader.
Giving [leaders] more information is valuable so they know how to kind of navigate
those nuances that come with any given project.” - Manager Participant, Focus
Group

Research further corroborates these sentiments by exploring how visibility not only directly
increases motivation (Ajzen, 1991; Eccles et al., 1983; Roemer & Orsillo, 2009), but that it also
increases confidence in one’s abilities, which similarly increases levels of motivation (Ajzen,
1991; Bandura & Adams, 1977). This increased level of recognition can be a strong determinant

29

of developer’s productivity and overall project success (Baddoo et al., 2006). Without a strong
cycle of reflection and visibility for engineering effort, one manager shared an example of new
developers hitting and replicating old barriers:

“There were specific, kind of technical, bad decisions that we made that we would
actually never make today. But [new developers were] learning off the technical
bad decisions.”
-Manager Participant, Focus Groups

Theme 2: Visibility impacts business decisions and goals. The second level of visibility can
be “top-down.” This is when organization-wide impact, progress and/or decisions are shared
with developers. From the leader's perspective, all managers in this study spoke about how
transparency and real-time insight into what work is in progress, completed, or blocked, helps
create clearer business expectations. Such visibility can help leaders re-prioritize projects or
shift company-wide OKRs (Craig, 2018). Managers spoke about how giving individual
contributors’ visibility into the “bigger picture” can also be necessary and beneficial to the
business’s bottom line. Individual contributors also shared that developers often need to play
a key role as a “signal” to leadership about the realities of abstract business goals.

“Providing information to leaders about how things are going, and then letting
reports have some transparent insight into what's the conversations that are
happening at the leadership level [is critical].”
- Manager Participant, Focus Group

“Engineers and individual contributors can impact their own developer experience
by speaking up if they think a deadline is unreasonable. Developers have agency to
change their experience through things like advocating for more learning time.”
- IC Participant, Interview

“A big part of leadership is to help provide that visibility and also help navigate so
you can put any person in the best position to both see what's happening, and also
contribute in a way that they know the business will appreciate and essentially
help them grow.”
- Manager Participant, Focus Group

Theme 3: Visibility is generated through advocacy, but good advocacy relies on careful
understanding of individuals. Given a host of complex societal factors, some developers may
come from backgrounds where feeling “seen” or valued is not a salient concern as long as
they produce strong technical work. Others come from underrepresented backgrounds,
which can increase adverse experiences that make it harder to feel valued or fairly assessed,
even in technical work (e.g., Roberson & Kulik, 2007). In Study 2, several developers shared that
discretion and care in the ways that managers made their work visible was a critical

30

component to feeling valued. Throughout this theme, participants noted the difficulty of
maintaining this advocacy and the long-term relationships and information exchange
required between managers and developers when an organization relies heavily on individual
managers to be the only source for translating engineering effort to the rest of the business.

“People are made differently. There are folks who would love to just work on code
and they don't care if people see it right away. They don't care about recognition.
Then there are folks who derive value from the fact that there are some eyes on it
[earlier]. You have to really deploy [visibility] it on a case to case basis.”
- Manager Participant, Focus Group

“Conversations are really really really important for building trust [with direct
reports]. Every developer is different. I think that's a really crucial point. Every
conversation is different. Understanding how that person operates …what
motivates this person is super important. Finding as many early and often
opportunities to provide feedback, both positive and constructive, and giving
[visibility] to those things so you can establish a cadence of feedback, helps build
the trust.”
- Manager Participant, Focus Group

“… there is essentially a huge set of internal tools and stuff which never really see
the light of day….that’s the role of the tech lead [or manager] …to create the
visibility that ‘I have like 2 or 3 folks on my team. They're super talented… just
because they're not doing [feature] work doesn't mean that they're not
contributing to the business…[making that visible is] a huge responsibility.”
-Manager Participant, Focus Group

Despite this individual complexity, overall developers agreed that when managers publicly
advocated for a developer’s skillset and/or made their contributions widely known, developers
felt validated, reassured that their accomplishments would endure, and felt more confident
and valuable bringing work to their team. Individual advocacy can be a “powerful tool” to
increase employee satisfaction, productivity and even retention (Johnson, 2022). But advocacy
was not only a tool for managers: developers mentioned that seeing this advocacy showed
them a skill they could cultivate for themselves, and that senior colleagues or tech leads could
also contribute to a software team.

“…it doesn't necessarily have to be the manager either that understands [you and
your work]. If someone understands, a peer..a junior developer....they can
[advocate for you and make your work more visible]“
- IC Participant, Focus Group

31

“If a good manager is paying attention, you're good at advocating for yourself or
other people are willing to advocate for you it will [help show] that you are a good
team player….”
- IC Participant, Interviews

However, it should be noted that successfully advocating required significant skill, time and
effort from technical managers. Managers spoke of translating engineering effort at the right
level, time, and place, and also the need to occasionally “hide” engineering effort when they
felt the business was liable to misunderstand it. This tension weighed on the managers in our
sample. Additionally, throughout this theme, we heard that if used to elevate developers who
already felt overexposed in an organization, advocacy may have adverse effects (i.e.
overshadowing or silencing other team contributions, or making underrepresented team
members feel less important).

All managers in this study shared that they often did not feel they had the proper resources to
prepare to advocate and instead pulled from their own experiences as a source of quick
judgment or assumptions about what a developer needed and why they worked in a certain
way. This can be dangerous as “no two developers are the same,” and managers and
developers may frequently be concerned with and prioritizing different forms of “productivity”
(Storey et al., 2022). Likewise, individual contributors shared that relying on a manager to
surface their work at the right time and place could feel highly variable. This uncertainty could
introduce significant stress and tension for developers.

“If you have a good manager, you won't feel the pressure that you just have to
make sure your data is perfect… A good manager is going to be hands-on but also
have context. [For example] your metrics might look really bad but your Manager's
going to know that’s because you've been researching something for a week and a
half that doesn't involve committing code or reviewing code.”
- IC Participant, Interviews

“I think a huge part of the role of the leader is to set up the structures for [priorities
and metrics] to be aligned. To make sure the reports’ clear, make sure you manage
up, and that leaders understand what that report's strengths and weaknesses are.
Then build the structure, whatever that might be, to allow [expectations] to be
aligned.”
- Manager Participant, Focus Group

“It doesn't matter how well you manage your team if you're not aligned or bring
visibility into the place that your team or department has within the organization.
Those pieces are critical.”
- Manager Participant, Focus Group

32

Advocacy, when applied cautiously and appropriately, can create greater outcomes for certain
developers. But under this theme, both managers and IC developers highlighted the
precarity of relying entirely on individual advocacy. Developers highlighted a need to move
from relying solely on highly skilled individuals to do this translation work, and toward
structural and organizational support that could replace ad hoc, individual advocacy with
more systematic insight into the contributions of engineering.

“I think I've realized the importance of taking myself out of the way…A lot of my
approach was based around [...] direct personal interactions which is important.
But I think I leaned so heavily on those that, after having a few circumstances
where I left the company or [stopped managing that person] [it didn’t] necessarily
set the reports up for the most success without me in the picture.”
- Manager Participant, Focus Group

Fig 8. The “visibility cycle” inside of an engineering organization as described by IC developers
and managers in Study 2

Study 2 Summary

The importance of managing trade-offs. In our interviews, developers consistently
highlighted one important aspect of high-quality software: making and sharing the right
decisions about trade-offs, priorities, and investments. Developers noticed that tasks which
were categorized as “technical” frequently had overlapping consequences to “non-technical”
work, and vice versa. This led many developers to discuss the fact that the most impactful
forms of decision making were both. For example, senior developers discussed how the social
and mentoring work of guiding junior teammates to consider alternative approaches would
yield more flexibility in later code decisions made by those teammates. This type of successful
problem-solving, and this cycle of influencing others, led many developers to question the
divisions between “technical” code work and “non-technical” contextual work of mentorship,
team planning, and communication. In particular, team-level definitions of success felt

33

important to this area of success, and individual measures of productivity felt inadequate and
even threatening to this arena of work.

The importance of visibility. Visibility was frequently defined as the skill of translating and
creating transparency around how engineering effort leads to impact, for both employees
and leadership. Developers shared how such transparency can not only improve employee
satisfaction and trust, but can also positively impact company metrics and ultimately
profitability. When done carefully, promoting a company culture of visibility was seen as a
recipe for success in software development organizations and a key dependency for
developer “success”. Developers and their managers highlighted examples of when visibility
was critical to individual developers’ motivation to solve hard problems, and manager’s
confidence that their teams were going to achieve success. Overall, being able to count on
visibility that went “beyond your software team” raised developer confidence and motivation,
and also brought information back to engineering teams about business impact, driving
improvements to overall software quality.

The importance and difficulty of tying engineering investment to business impact. Across the
board, participants agreed that more visibility into team progress can also be beneficial for
leaders, as it created opportunities for realistic goal-setting and appropriate company-wide
changes. Developers shared the need for leaders’ business strategy, goals, and planning to be
informed by “the possible” in engineering. In particular, managers and more senior
developers spoke strongly of wanting to be a voice for engineering decision-making, yet
navigated constant complexity in guessing where, and when, to have this voice. Our
participants contrasted moments of productive, shared visibility with moments of dealing
with uncertain, “black box” moments inside of their organizations. Echoing our quantitative
findings, shared visibility helped to mitigate these “black box” moments. Overall, nearly all
participants vocalized that visibility can be a change-agent in fostering developer trust,
increasing employee satisfaction and even strengthening org-wide strategy, but also saw this
benefit unevenly applied in their organizations.

34

Recommendations from Study 2

Finding Recommendation Potential Impact

Developer motivation is
influenced by
self-confidence; which is
impacted by moments of
visibility and recognition.

Managers should make their reports more ⬆Employee Satisfaction
visible by publicly recognizing and ⬆Employee Retention
advocating for their work.

Where possible, seek out opportunities to
credit developers directly in business
impact, such as representation in demos,
and recognition in launches.

Org metrics can be
impacted by a
lack of transparency
around team progress.

Tying engineering
investments to business
impact can lag over time,
and relies heavily on
individual manager
advocates.

Leaders should provide opportunities to
act on transparency around team progress

Assess whether engineering effort is
evaluated with metrics that drive change
and decisions, and ensure that long-term
impact is tracked over time and across
engineering projects

⬆Technical Roadmapping
⬆Tangible Org Metrics
⬇Missed Org Targets
⬇Wasteful Project
Spending

Some managers and
leaders struggle with how
to advocate for their
reports.

When orgs depend on
individual managers for
reporting and visibility,
and those managers
leave, individual
contributors can struggle
and experience loss of
recognition/opportunity

Organizations should provide educational
resources on how to advocate effectively
across lines of difference

Managers must get to know their reports
well enough to know how to effectively
advocate.

Leaders should ensure there are
documentation and recognition
structures that maintain a “life-cycle” view
of developers’ work within an
organization, helping make IC
contributions visible beyond individual
advocates

⬆Employee Satisfaction
⬆Employee Retention
⬆Equity & Inclusion
⬇Knowledge loss

Table 8. Study 2 Recommendations

35

Study 3. “Healthy metrics”: what we learned about how software
teams measured their work

Study 3 High Level Summary

Only 20-30% of developers report being on a team that consistently uses team-level
software metrics.

For developers who do report being on a team that uses software metrics, many
report common pitfalls such as not measuring enough things, measuring things
without context, or being concerned primarily with the appearance rather than
meaning of the metric.

Despite this, developers are positive on the overall potential benefits of using
metrics, with high levels of agreement that tracking parts of their coding process
increases visibility, helps their teams make trade-off decisions, and helps them
understand their own productivity.

Racially minoritized developers were more likely to agree that tracking parts of their
coding process, and that team tracking of coding processes, was useful and
impactful to their work. This may reflect a greater concern from some developers
with obtaining visibility and recognition for technical work, which previous research
has documented for people who hold minoritized identities in STEM fields.

In Study 3, we investigated what developers told us about measurement and the use of
software metrics on their teams, as well as their usage of software metrics as individuals.
Measuring software teams’ activity and output, and comparing this between teams, is
difficult. Between teams, software teams may use vastly different measurements as their
“metrics,” and the expected values and impactful change on these metrics depends heavily
on the type of engineering work being done, and may provoke misconceptions from people
not directly involved in the context of the software metric (for more commentary on this, see
Sadowski & Zimmerman, 2019). Even within a single software team many different metrics
may be used, emphasized, or discarded over time to correspond to changing definitions of
team success.

To grapple with this complexity, we used initial pilot testing, qualitative interviews with
developers, and a survey of previous research to develop a set of questions describing how

36

developers perceive the usefulness and impact of metrics in their workplace, rather than a
simple canvas of which metrics they are using (refer to Table 2 for a summary of quantitative
measures across Studies 1 and 3).

Looking at metrics usage. For Study 3, we focused on asking developers about the activity of
measurement and its impact in several different ways. First, developers reported whether
they used software metrics as individuals and/or their team, in what rituals these were used,
and whether they believed their teams were falling into one of four common metrics
implementation pitfalls. These “pitfalls” are based on recommendations from the Software
Improvement Group and their experience with evaluating the implementation of software
metrics (Bouwers et al., 2012; 2013). We adapted these patterns into a “metrics diagnostic”
item for this study (Table 9). While our adapted survey item was not a comprehensive
summary of all the ways that metrics implementations can go wrong, it provided a helpful
starting point for characterizing developers’ perceptions of how their teams are
implementing metrics.

Common Metrics Pitfalls

1. We tend to measure things without enough context.

2. We're concerned about the appearance, but not really the meaning of
what we've measured.

3. We have not measured enough things.

4. We measure many things, but they do not feel related to each other.

Table 9.

Looking at the Impact of Measuring Coding Work (IMCW). Finally, developers who indicated
that they or their teams used metrics answered a series of questions aimed at identifying
whether developers found measurement of software work 1) useful and impactful to the
progress of immediate technical work 2) increasing visibility of technical work and 3) helpful
to individual developers in understanding their own productivity. Previous research has found
that developers’ perceptions of the usefulness of metrics can be a large barrier to their
adoption (Wallace & Sheetz, 2014).

Across industries and engineering roles, only 21-32% of developers report
being on a team that consistently uses software metrics. Uncertainty
around whether teams even use metrics emerged as a significant
theme.

Overall, developers reported mixed software metrics usage (see Figures 9-11 for some selected
views of this data by groups). Across the entire analytic sample of developers (N = 1282), 29%
reported being on a team that used software metrics, and 23% reported using individual

37

metrics about their software work. These groups overlapped: developers who reported using
team metrics were also significantly more likely to report using individual metrics [χ2(4, N =
1282) = 663.62, p < .01].

A notable percentage of developers answered Uncertain/Maybe on their team metrics use
(26%), which may indicate that they are unaware of whether their managers and leaders track
software metrics, or may indicate an uneven and inconsistent usage of different metrics.
When we asked developers when they saw software metrics used, a larger percentage
reported usage (e.g., 41% of developers reported the use of software metrics during sprint
planning; Fig 9).

Taken together, these findings suggest that many developers feel uncertainty about metrics
usage on their team, and may be experiencing uneven and often-changing uses of
measurement. This may reflect a lack of clarity on what managers see and track, an
uncertainty which was also mentioned in our qualitative analysis. This pattern may also reflect
the difficulty of assessing “standard practice” in how developers measure their work,
particularly because developers likely see different practices across their teams. Coding work
requires developers to frequently collaborate across and between formal hierarchies; out of
the developers who answered firmographic items on our survey, more than 63% agreed that
they collaborated closely with developers who had a different manager than theirs.

Looking at when software teams use metrics can help contextualize what role those metrics
may be playing in developers’ work. It’s important to note, across this usage, that not all
developers experience the same software rituals, as teams frequently use different strategies
and processes (e.g., not all teams hold sprint planning meetings). However, the top three most
frequent software rituals in which developers reported using metrics were Sprint Planning,
Standups, and Project Retrospectives (Fig 9). Notably, a much smaller percentage of
developers indicated that their organizations were using metrics during monthly or quarterly
business meetings, which suggests that software metrics are either not making it outside of
team-focused rituals, or their usage outside of specific software teams is relatively opaque to
developers themselves. This finding underlines the tension and uncertainty that our
qualitative research participants expressed in Study 2 in whether or not their work would
become visible to the organization overall.

38

Fig 9. Software rituals in which developers reported their teams using software metrics.
Developers could select multiple options, so each percentage is shown out of the entire sample, and
responses add up to more than 100%. Based on full sample size of 1282

Fig 10: Whose team uses software metrics by top engineering role types

39

 Fig 11: Whose team uses software metrics, by top industries

40

For developers whose teams use metrics, the most commonly reported pitfalls
were not measuring enough things, and measuring things without enough
context.

In Study 1, we showed that Healthy Metrics Use was associated with increased developer
productivity. We explored this with a composite score: Healthy Metrics Use was defined as
developers who are on teams that both use metrics consistently, and who agree, on our
“metrics diagnostic” item, that their team consistently uses the metrics that are “right for us.”
Compared to developers who match either only one, or neither of those criteria, healthy
metrics users show a benefit. This group was relatively small: only 14% of developers in our
survey overall were “healthy metrics users.”

For the metrics diagnostic question, over the whole subsample of developers who were on
teams using metrics, 69% of developers reported one of the key pitfalls. Developers reported a
range of uses, which continues to suggest that developers see variable implementation of
metrics, and that developer perceptions around this usage is an important thing for
managers and leaders to understand (Fig. 12). We also explored for but found no evidence in
this sample that developers were more likely to detect, report, or be exposed to the metrics
pitfalls depending on characteristics such as their engineering role, whether or not they
worked closely with developers who had a different manager, and the demographics
collected in this study.

Fig 12. Developers reported a range of use on the Metrics Diagnostic, including four key
“metrics pitfalls”

Despite the frequent occurrence of these pitfalls, developers were strongly positive on the
impact of tracking and quantifying engineering work. This was true even for the developers

41

who saw pitfalls and mistakes in their team’s use of metrics, who were still very positive on
the overall impact and utility of metrics. Across the entire IMCW scale, 87% of developers
agreed that tracking parts of their coding process would help their teams make trade-off
decisions, increase the visibility of technical work, and help them see their own productivity
(Fig 13). This last finding once again echoes the research on the benefits of self-monitoring
and meaningful information gathering mentioned in Study 1, which suggests that developers
will benefit from measuring their work not only to assess project success, but also in order to
reflect and improve on their own productivity.

In the qualitative data gathered in Study 2, we also heard examples of why developers see
benefits from improving the over-time measurement of their work. One developer shared an
example of tracking their coding work as an exercise in diagnosis and reflection: “[metrics let
me ask] am I coding every day, am I coding efficiently. Am I writing new code that endures? Is
my code getting better...that's a little subjective, but how long does it take a PR from getting
submitted to being merged...my manager and I have talked about some of those [metrics] in
the past -- seeing my code getting better helps me.” In another quote, a participant shared a
similar growth mindset around how tracking represented an opportunity for improvement: “I
just view [metrics] as ways to remind me of how I can do better.”

Developers’ positivity toward the benefits of measurement suggests developers both want
and see the potential impact from better measurement and tracking of coding processes,
both for themselves and across their teams – even when there are challenges with its
implementation. Their positivity about measurement is mitigated, however, when developers
feel uncertainty in business and leadership’s genuine understanding of their effort. For
example, one engineering manager shared a counterpoint view on visibility, emphasizing the
need for managers to calibrate the pressure that engineering effort may come under:
“[sometimes my team needed] a kind of comfortable bubble [to keep focus]…sometimes
organizations [have many] ad hoc requests…and when folks are pinging your team right and
left [you need to] tell folks, we’ll get back to you.” Another manager shared, “I think it's like a
balancing game, really right. You want the visibility to come in, but you don't want to be over
exploited. So I think that's the kind of balancing game you're playing.”

Individual contributors were also cognizant of the ways that important elements of
engineering work remain difficult to measure. Across our qualitative research, developers
spoke in particular about the difficulty of measuring collaboration. However, multiple
participants also spoke about strategies for using measurement as a tool for recognizing
shared work, for example: “We try to be intentional if we pair, that we commit code that both
of our names are on it." Individual contributors also highlighted the possibility of gamifying
metrics inside of a system where measures were not thoughtfully connected to real impact,
or the possibility that metrics are more or less accurate for different software practices: “Some
people will game a lot [...] if you follow the guidelines of development patterns, metrics are
definitely more accurate with certain development patterns, like frequent check-ins and a
sort of more agile approach."

42

 Fig 13. Developers were strongly positive overall on the IMCW items.

43

Racially minoritized developers are more likely to agree that tracking
parts of their coding process was both useful and that it increased
visibility and technical progress.

Across our participant characteristics, we wanted to know whether there were any signals
about whether some developers may perceive metrics as more useful and impactful
compared to others. To answer this question, we used a regression model to ask whether
engineering role, industry, team size, reporting to a different manager than collaborators,
gender, sexual orientation and/or gender identification minority status, educational status,
and racial identification groups showed any differences in how developers scored on the
Impact of Measuring Coding Work (IMCW) scale. Accounting across these characteristics, we
found one significant difference: racially minoritized developers were more likely to agree
that tracking & quantifying parts of their coding process was beneficial to both team and
self (Figure 14; see Appendix D for full details). We did not find any significant subgroup
differences for being more likely to say their team “used the right metrics,” nor in being more
or less likely to belong to a team that used metrics in the first place.

Fig. 14: Subgroup differences as shown in odds ratios: only Racially minoritized developers had
significantly higher odds of scoring high on the impact of coding work measure. For full model
details, see Appendix D.

While exploratory, as our study was not a representative sample across these identities
among professional developers, this finding raises the interesting and important possibility
that capturing a history of clear, and shared measurements about developers’ effort and

44

process may be particularly impactful and appreciated by racially minoritized developers.1

This interpretation is supported by research on related differences of experience in STEM
fields. People at higher risk of adversity and discriminatory experiences often report a deeper
concern with gatekeeping, harsh evaluation, and lack of credit for technical work (e.g.,
Quadlin, 2018). For developers who have experienced and anticipate systematically different,
and cumulatively steeper, career impact from discrimination and overly punitive evaluations
compared to majoritized developers, it may be that concerns about mismeasurement are
outweighed by concerns about what will happen without measurement at all. While our
qualitative data in Study 2 did not specifically ask about the experiences of racially minoritized
developers, some comments from developers supported this interpretation:

“...speaking of someone to elevate them or giving them opportunities that may
not have [originally] been identified for them [is important]. You find that across
lines of gender, race, age, just difference, that some folks [don’t have] a fair shot.
Sometimes it's harder [to get recognition or visibility] if you're from a certain
demographic versus others….I think it's very important that somebody speak of
you in order to help you in your path.” - IC Participant, Interviews

“And then I guess when you're talking about [...] along gender lines and things like
that… I've heard [people] talk about how the metrics have been equalizers for
them compared to past development environments that they've been in.” - IC
Participant, Interviews

We designed our demographic questions to allow for robust self-identification, including
allowing multiple category choice, and identity categories drawn from existing best practice
recommendations for equity and accuracy in measurement of identity (see Appendix B for
further details). Nevertheless, we are conscious that survey questions about identities can
never perfectly represent individual identity, and many participants chose not to disclose this
information in this research. Further, participants could either choose to not answer any
demographic questions or self-identify as a text response. All of these choices led to a reduced
sample size across identity questions. To avoid potentially misleading signals, we chose a
conservative approach by comparing developers who had answered any of the categories
that included “white” with developers who had answered any category that did not include
“white” (see Appendix D for full model details). This is a very rough categorical comparison,
which does not represent the complex experiences included within and across groups. This
analysis is not a final statement, but a suggestive signal that future in-depth work is needed
to understand how different developer groups experience the impact of measurement
practices. We recognize the limitation in this description and plan to continue investing in
specific recruitment strategies to better represent complex identities (e.g., distributing our

1In keeping with best practice suggestions from sociology and social sciences, we chose the term “racially
minoritized” to bring focus to the ways in which this group of developers experience being on teams with
systematically fewer people who share their backgrounds and identities, and the fact that this experience is the
result of environmental and industry-wide, rather than individual factors. See Appendix B for more about how we
chose to measure identities for developers.

45

research recruitments to affinity groups in tech, recruiting intentionally for qualitative
research).

Overall, we highlight the need for leaders and managers of engineering organizations to
understand the diverse experiences of developers, and to learn from all developers in
engineering organizations, particularly those less represented in the majority of software
research, such as non-US based developers, global majority developers, developers navigating
adverse experiences such as discrimination, and other key experiential differences that
impact how developers relate to success, performance evaluation, and safety in their
environments. Along with many other researchers in software engineering and social science
(e.g., Cole, 2009; Gren, 2018; Rodríguez-Pérez et al., 2021), our finding echoes the need for
continued intentional recruiting of underrepresented participants in software research and
intersectionality in analyses, both in order to understand these unique experiences, and for
continued insight into how these dynamics create or dampen developer productivity.

Study 3 Summary: Moving towards “Healthy Metrics”

Much research on developer experience has noted the dangers of measuring productivity
badly. Such bad measures can dampening developer productivity altogether; metrics that
make developers feel that important process and effort work is punished can cultivate a
performance culture in which developers feel obliged to do busywork and perform “to the
metric”, focusing on the appearance of their work instead of authentic quality (e.g., Hicks,
2022; Harackiewicz et al., 2000; Zingaro, 2015). Recent research also points out dangers in
measuring developer productivity such as widespread misalignments in how managers and
individual contributors define productivity, and misunderstand each other’s definitions (e.g.,
Sadowski & Zimmermann, 2019; Storey, Houck, & Zimmermann, 2022).

In Study 3, we explore the idea of healthy metrics. Focusing on better definitions for healthy
metrics is an important path forward for software teams. In healthy metrics use,
measurement and tracking can be seen as the start of a conversation rather than the entire
conversation. Nearly every participant in our qualitative research made the point that metrics
never capture all their important work. One senior developer in our qualitative research
described it this way: “there are things which couldn't be captured in [software] metrics
which I believe personally matter tremendously… like the research work that you are doing
for one of the projects. I cannot capture day-to-day research work [in standardized metrics].”

Yet incomplete measures can still be highly informative, particularly when they provide
unique insight over time and drive reflection for teams and individuals. While software
metrics are not used by most teams, and many developers report concern with how their
teams use metrics, most developers who are on software teams that use metrics agree that
this use is healthy. In Study 1, we found that healthy metrics usage had a significant
relationship with developers’ self-reported thriving and visibility. In Study 2, we found that
managers and developers both struggled to tie engineering impact to outcomes, but
benefitted from doing so.

46

Across Study 3, we found uneven and uncertain usage of metrics, but also that most
developers were supportive of quantifying and tracking their coding process. We did not find
any attributes which significantly predicted which developers were more likely to agree that
their teams “use the right metrics for use.” Overall, metrics usage is most likely driven by
managerial choices and group processes such as conventions of sprint planning, not
individual developer preferences. This means that the structural manager and leadership
decisions around how software teams are measured are even more important to get right, in
order to maximize beneficial impact on developer productivity.

As described in Study 2, the responsibility to track and communicate coding effort and
impact weighed on managers and leaders. Speaking of what they would define as their own
success as an engineering manager, one participant in our qualitative research said: “it’s both
helping [developers] grow and be successful from their own personal ends, and then helping
them contribute to the business in a way that the business can see as well.” Yet another
manager concluded: “There could even be some folks in the business, marketing or sales,
who don't even know that, you know something like [our biggest engineering effort] is
happening, you know. They just [don’t] see that part of it.”

Recommendations from Study 3

Finding Recommendation Potential Impact

Managers should audit whether ⬆Developer Recognition
measurement practices are being applied ⬆Collaboration
consistently across teams and planning ⬆Technical Roadmapping
cycles, and assess whether developers ⬇Missed Org Targets
experience friction in how their work is ⬇Inaccurate
measured benchmarking between

engineering teams
Developers should share which metrics
they find most useful, and report & discuss
inaccuracies of measurement as a team

Organizations should take steps to ensure
that engineering effort is captured across
time and shared to decision makers

Many teams report
inconsistent use of
metrics

Many developers feel Developers should consider how
positively about the thoughtful measures can be used amplify ⬆Trust
benefits of tracking their and document collaboration, celebrate ⬆Developer Experience
coding work, but this upskilling, and encourage junior ⬇Implementation failures
benefit is mitigated by teammates’ progress for new initiatives
trust and transparency in

47

the organization Managers should invite developers into
decisions about measuring progress
between teams, and clarify expectations
for measurement between different types
of engineering work

Racially minoritized
developers may report
stronger desire for
tracking their coding
work

Organizations should include an
examination of how performance and
technical work is measured and made
visible among the concerns of focus in
diversity, equity, inclusion & belonging
initiatives, reflecting the potential
differences of experience for minoritized
developers

⬆Employee Satisfaction
⬆Employee Retention
⬆Equity & Inclusion

Table 10. Study 3 Recommendations

TAKE-AWAYS & CONCLUSION

In this report, we’ve shared key factors that we believe work together to create an ecosystem
for sustainable, high-quality productivity inside of engineering organizations. Understanding
what truly drives developer productivity is challenging, but critical. Whether engineering
organizations are working on the right things and doing it well is a key priority for businesses,
engineering leaders, and developers themselves. Our studies across 1200+ developers reveal
important stories about developer productivity:

● In Study 1, we presented both Developer Thriving & Visibility as a framework to
understand the core facets of 1) good problem-solving environments for software
teams that enable innovation and 2) the organizational factors that increase developer
motivation via the recognition of engineering effort and impact. The factors of
Developer Thriving, Visibility, and Healthy Metrics were all shown to significantly
predict greater productivity. In Table 11, we summarize examples of developer
experiences that either lifted or lowered the four constructs in Developer Thriving.

● In Study 2, truly understanding engineering effort and advocacy were significant
aspects to how software teams thought about meaningful visibility cycles and software
success. In interviews and focus groups, developers broadened the idea of individual
developer satisfaction by sharing the impact of whether their technical work was
known and valued by others. Visibility brings attention to how what is happening
outside of software engineers’ individual work and their immediate teams changes
developers’ perceptions, motivation and planning. Our findings emphasized the
difficulty and uncertainty that many developers face in finding this visibility, and the
fragile nature of relying only on individual managers to sustain it for their teams.

48

● In Study 3, we surveyed how developers are measuring their work. We found more
evidence that many developers find strong positive benefits in tracking coding work.
But developers are also highly cognizant of the fact that metrics are used inside of
organizations, and that trust, collaboration, and authenticity distinguishes healthy
metrics usage from inauthentic and piece-meal approaches.

Developers feel the strain of making their work “visible.” Our qualitative research surfaced a
critical disconnect that many developers struggle to navigate, and our investigation of
measurement shows that many developers are uncertain about how their work is measured.
For early career developers, managers, and tech leads across industries, it remains difficult to
ground engineering work in real business impact, to gather meaningful data about their work
over time, and to understand when to calibrate engineering investments and readjust course
in response to changing priorities.

Increasing visibility may be a lever for big impact. Reminiscing about early career, one
manager in our qualitative study described the impact of “a really good boss” who involved
them in a tangible demo with real customers, remembering it as “quite empowering,
because you know the end user of this product.”

Even though thoughtful and fit-for-purpose measurement may help to increase developers’
sense of the value of their work and give software teams a tool for increasing the visibility of
engineering’s impact in a business, fewer than one in four developers in our quantitative
sample of 1200+ reported being on a team that consistently used software metrics. Focusing
on models for “healthy measurement” may have a deep impact on developer’s individual
cadence of work and software teams’ collaborative problem solving. Metrics can work to
increase multiple forms of awareness for engineering work: within-team awareness of
progress over time, between-team recognition and comparison, and overall accuracy in
organization awareness of engineering efforts. Thoughtful measurement can provide
concrete data to developers and managers to champion and advocate their performance and
progress, thus improving satisfaction and thriving.

One developer shared that joint clarity and collaboration around measurement was a
reflective process, as opposed to using metrics as a “weapon” to punish: "[good managers]
walk the talk. [My manager] is looking at metrics to figure out where I'm blocked and where I
can improve...he's not weaponizing them either. I think he made that clear that's not his
goal." Connecting true engineering effort to measures that feel valid, effort-oriented, and
useful to developers’ active problem-solving is a core differentiator for “healthy
measurement.” And for managers and leaders, tying engineering impact to business impact
is the highest priority. As one manager put it, the ultimate form of developer productivity and
success is real-world impact: “It comes down to, are you able to have an impact on the
product? That company? if you believe in the mission of that company. Have you been able
to drive that forward?”

49

Lifting or Lowering Developer Thriving: Examples across our research

Construct in Examples participants gave
Developer Thriving

Team and org-level recognition of developer-driven initiatives, such as code “clean up”

Teams and managers hold regular conversations about goals and success definitions,
⬆ Lift Agency acknowledging that software teams work towards multiple goals

Weave measurement into teams’ existing software rituals and give developers a
platform for adding context to changes on metrics

⬇Lower Agency

Metrics used to evaluate all engineering work that are only appropriate for some, e.g.,
failing to recognize constraints of legacy systems for some teams

Abrupt and unpredictable disruptions to developers’ work and process, such as
frequent initiative redirections

Lack of developer-focused documentation to aid onboarding into new codebases and
unfamiliar parts of the codebase

Rigidly defining success across developers without considering environmental factors
such as experience, team needs, and organizational friction

Business decision-making that fails to recognize there may be multiple technical
approaches in a given problem space, and punishes developers for not choosing “the
right” approach before evaluation and testing

Developers track parts of their coding process over time and reflect on whether their
cadence of work is blocked in surprising ways

⬆Lift Motivation &
Self-efficacy

Junior developers are given frequent and attainable “wins” when onboarding to a
new team and codebase

Out-of-the-box or unexpected problem-solving is noticed and celebrated by tech
leads and other influential senior colleagues

⬇Lower Motivation &
Self-efficacy

When team-level planning does not adapt to account for and reward moments of
solving unexpectedly difficult code effort, such as triaging and debugging

Assigning large, complex, or vague tasks without providing adequate support, time,
or resources

Persistent scope creep and rapid change of metrics used to evaluate “good work”
during planning moments vs evaluation moments

Infrequent manager check-ins, requiring many “restarts” and inefficiencies in
developers communicating their progress

50

⬆Lift Learning Culture

Team encourages paired programming and mobbing and shares credit for “support”
work between developers

A reliable cadence of code review practices that encourage meaningful feedback
between senior and junior developers

A manager or tech lead giving a developer space pursue a new technological
approach even if it does not match previous conventions

Team retrospectives that track, validate, and share examples of learning new skills

Post-mortem rituals that include tracking improvements made in the future in
response to identified problems

⬇Lower Learning
Culture

Discouragement of documentation and other forms of long-term knowledge sharing

Emphasizing productivity metrics out of context that only reflect quantity,
discouraging the recognition of quality or effort

Failure to acknowledge that “time cost” determining a potential solution dead-end is
sometimes a necessary contribution in technical work

Senior developers/tech leads uncertain whether their time spent on mentorship is
visible “counts” to managers

⬆ Lift Support &
Belonging

Teams celebrating unexpected contributions and new approaches from developers

Developers have the opportunity to spend informal, social time together

Teams and organizations ensure that diversity in backgrounds, career levels, and
experience are represented throughout leadership opportunities, such as speaking
roles in high impact presentations

Leaders model a culture of “thoughtful” measurement for team success which
prioritizes accuracy and transparency

Secret “rules,” unclear or inconsistent expectations and norms in code work, such as
unnecessarily punitive code reviews

⬇Lower Support &
Belonging

Promotions and recognitions that developers feel skew towards rewarding certain
types of engineering roles over others

Developers believing that only certain backgrounds or tenure in the organization are
“allowed” org-level visibility

Table 11. Selected examples of ways engineering organizations can lift or lower the “virtuous
cycles” of Developer Thriving.

51

REFERENCES
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision
Processes, 50, 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Anderson-Butcher, D., & Conroy, D. E. (2002). Factorial and criterion validity of scores of a measure of
belonging in youth development programs. Educational and Psychological Measurement, 62(5),
857–876. https://doi.org/10.1177/001316402236882

Arel-Bundock, V. (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical
Software, 103(1), 1–23. https://doi.org/10.18637/jss.v103.i01

Baddoo, N., Hall, T., & Jagielska, D. (2006). Software developer motivation in a high maturity company: A
case study. Software Process: Improvement and Practice, 11(3), 219–228. https://doi.org/10.1002/spip.265

Bandura, A., & Adams, N. E. (1977). Analysis of self-efficacy theory of behavioral change. (1977). Cognitive
Therapy and Research, 1(4), 287-310. https://psycnet.apa.org/doi/10.1007/BF01663995

Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2008). Motivation in Software Engineering: A
systematic literature review. Information and software technology, 50(9-10), 860-878.
https://doi.org/10.1016/j.infsof.2007.09.004

Billett, S. (2011). Subjectivity, self and personal agency in learning through and for work. In M. Malloch, L.
Cairns, K. Evans & B. O'Connor (Eds.), The SAGE handbook of workplace learning (pp. 60-72). Los
Angeles, CA: SAGE

Bornstein, P.H., Hamilton, S.B. & Bornstein, M.T. (1986) Self-monitoring procedures. In A.R. Ciminero, K.S.
Calhoun, & H.E. Adams (Eds) Handbook of behavioral assessment (2nd ed). New York: Wiley.

Bouwers, E., Visser, J., & Van Deursen, A. (2012). Getting what you measure: Four common pitfalls in
using software metrics for project management. ACM Queue, 10(50), 50-56.
https://doi.org/10.1145/2208917.2229115

Bouwers, E., van Deursen, A., & Visser, J. (2013). Software metrics: pitfalls and best practices. 35th
International Conference on Software Engineering (ICSE), 1491-1492.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology,
3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Cheng, I., Murphy-Hill, E., Canning, M., Jaspan, C., Green, C., Knight, A., Zhang, N., & Kammer, E. (2022).
What improves developer productivity at Google? Code quality. 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22).
https://doi.org/10.1145/3540250.3558940

Cohen, J.S., Edmunds, J.M., Brodman, D.M., Benjamin, C.L., Kendall, P.C. (2013), Using self-monitoring:
implementation of collaborative empiricism in cognitive-behavioral therapy. Cognitive and Behavioral
Practice, 20(4), 419-428. https://psycnet.apa.org/doi/10.1016/j.cbpra.2012.06.002

Cole, E. R. (2009). Intersectionality and research in psychology. American Psychologist, 64(3), 170.

52

https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1177/001316402236882
https://doi.org/10.18637/jss.v103.i01
https://doi.org/10.1002/spip.265
https://psycnet.apa.org/doi/10.1007/BF01663995
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1145/2208917.2229115
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/3540250.3558940
https://psycnet.apa.org/doi/10.1016/j.cbpra.2012.06.002

Craig, W. (2018, October 16). 10 things transparency can do for your company. Forbes. Retrieved
February 15, 2023, from
https://www.forbes.com/sites/williamcraig/2018/10/16/10-things-transparency-can-do-for-your-company/
?sh=7bab55e625d0

Dawson, L., Mullan, B., & Sainsbury, K. (2015). Using the theory of planned behaviour to measure
motivation for recovery in anorexia nervosa. Appetite, 84, 309-315.
https://doi.org/10.1016/j.appet.2014.10.028

Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., et al. 1983. Expectancies, values, and
academic behaviors. In J. T. Spence (Ed.), Achievement and Achievement Motivation (pp. 75–146). San
Francisco: Freeman

Ehlers, A., Clark, D.M., Hackmann, A., McManus, F., Fennell, M., Herbert, C., & Mayou, R. (2003). A
Randomized Controlled Trial of Cognitive Therapy, a Self-help Booklet, and Repeated Assessments as
Early Interventions for Posttraumatic Stress Disorder. Archives of General Psychiatry, 60(10), 104-1032.
https://doi.org/0.1001/archpsyc.60.10.1024

Fagerholm, F., & Münch, J. (2012, June). Developer experience: Concept and definition. In 2012
international conference on software and system process (ICSSP) (pp. 73-77). IEEE.

Forsgren, N., Storey, M. A., Maddila, C., Zimmerman, T., Houck, B., & Butler, J. (2021). The SPACE of
Developer Productivity: There's more to it than you think. Queue, 19(1), 20-48.
https://doi.org/10.1145/3454122.3454124

Foster, S. L., Laverty-Finch, C., Gizzo, D. P., & Osantowski, J. (1999). Practical issues in self-observation.
Psychological Assessment, 11(4), 426–438. https://doi.org/10.1037/1040-3590.11.4.426

Gobeli, D. H., Koenig, H. F., & Bechinger, I. (1998). Managing conflict in software development teams: A
multilevel analysis. Journal of Product Innovation Management: An International Publication of the
Product Development & Management Association, 15(5), 423-435.
https://doi.org/10.1111/1540-5885.1550423

Greiler, M., Storey, M. A., & Noda, A. (2022). An actionable framework for understanding and improving
developer experience. IEEE Transactions on Software Engineering.
https://doi.org/10.48550/arXiv.2205.06352

Gren, L. (2018). On gender, ethnicity, and culture in empirical software engineering research. 11th
International Workshop on Cooperative and Human Aspects of Software Engineering, 77-78.
https://doi.org/10.1145/3195836.3195837

Hackman, J. R., Oldham, G. R. (1976). Motivation through the design of work: Test of a theory.
Organizational Behavior and Human Performance, 16, 250-279.
https://doi.org/10.1016/0030-5073(76)90016-7

Harackiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M., & Elliot, A. J. (2000). Short-term and long-term
consequences of achievement goals: Predicting interest and performance over time. Journal of
Educational Psychology, 92(2), 316. https://psycnet.apa.org/doi/10.1037/0022-0663.92.2.316

53

https://www.forbes.com/sites/williamcraig/2018/10/16/10-things-transparency-can-do-for-your-company/?sh=7bab55e625d0
https://www.forbes.com/sites/williamcraig/2018/10/16/10-things-transparency-can-do-for-your-company/?sh=7bab55e625d0
https://www.forbes.com/sites/williamcraig/2018/10/16/10-things-transparency-can-do-for-your-company/?sh=7bab55e625d0
https://doi.org/10.1016/j.appet.2014.10.028
https://doi.org/0.1001/archpsyc.60.10.1024
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1037/1040-3590.11.4.426
https://doi.org/10.1111/1540-5885.1550423
https://doi.org/10.48550/arXiv.2205.06352
https://doi.org/10.1145/3195836.3195837
https://doi.org/10.1016/0030-5073(76)90016-7
https://psycnet.apa.org/doi/10.1037/0022-0663.92.2.316

Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis. Guilford
Press.

Hicks, C. It’s Like Coding in the Dark: The need for learning cultures within coding teams [White Paper],
Catharsis Consulting. [https://www.catharsisinsight.com/reports]

Jason, L. (1975). Rapid improvement in insomnia following self-monitoring. Journal of Behavior Therapy
and Experimental Psychiatry, 6(4), 349–350. https://doi.org/10.1016/0005-7916(75)90079-8

Johnson, D. (2022, September 12). The importance of managers as advocates. MIT Sloan Management
Review. Retrieved February 15, 2023, from
https://sloanreview.mit.edu/article/the-importance-of-managers-as-advocates/

Johnston, K. L., & White, K. M. (2003). Binge-drinking: A test of the role of group norms in the theory of
planned behaviour. Psychology & Health, 18(1), 63-77. https://doi.org/10.1080/0887044021000037835

Kassambara, A., & Patil, I. R package Visualization of a Correlation Matrix using 'ggplot2'.
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2

Kavanagh, D. J., Sitharthan, T., Spilsbury, G. Vignaendra, S. (1999). An evaluation of brief correspondence
programs for problem drinkers. Behavior Therapy, 30(4), 641–656.
https://doi.org/10.1016/S0005-7894(99)80030-6

Kim, Y. E., Yu, S. L., Wolters, C. A., & Anderman, E. M. (2023). Self-regulatory processes within and
between diverse goals: The multiple goals regulation framework. Educational Psychologist, 1-22.
https://doi.org/10.1080/00461520.2022.2158828

Korotitsch, W. J., & Nelson-Gray, R. O. (1999). An overview of self-monitoring research in assessment and
treatment. Psychological Assessment, 11(4), 415. https://psycnet.apa.org/doi/10.1037/1040-3590.11.4.415

Kronk, C. A., Everhart, A. R., Ashley, F., Thompson, H. M., Schall, T. E., Goetz, T. G., Hiatt, L., Derrick, Z.,
Queen, R., Ram, A., Guthman, E. M., Danforth, O. M., Lett, E., Potter, E., Sun, S. D., Marshall, Z., Karnoski, R.
(2022). Transgender data collection in the electronic health record: Current concepts and issues.
Journal of the American Medical Informatics Association, 29(2), 271–284,
https://doi.org/10.1093/jamia/ocab136

Lagos D, & Compton D. (2021). Evaluating the use of a two-step gender identity measure in the 2018
General Social Survey. Demography, 58(2), 763-772. https://doi.org/10.1215/00703370-8976151

Lambert, M. J., Hansen, N. B., & Finch, A. E. (2001). Patient-focused research: Using patient outcome data
to enhance treatment effects. Journal of Consulting and Clinical Psychology, 69(2), 159–172.
https://doi.org/10.1037/0022-006X.69.2.159

Latner, J. D., & Wilson, G. T. (2002). Self-monitoring and the assessment of binge eating. Behavior
Therapy, 33(3), 465–477. https://doi.org/10.1016/S0005-7894(02)80039-9

54

https://www.catharsisinsight.com/reports
https://doi.org/10.1016/0005-7916(75)90079-8
https://sloanreview.mit.edu/article/the-importance-of-managers-as-advocates/
https://doi.org/10.1080/0887044021000037835
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2
https://doi.org/10.1016/S0005-7894(99)80030-6
https://doi.org/10.1080/00461520.2022.2158828
https://psycnet.apa.org/doi/10.1037/1040-3590.11.4.415
https://doi.org/10.1093/jamia/ocab136
https://doi.org/10.1215/00703370-8976151
https://doi.org/10.1037/0022-006X.69.2.159
https://doi.org/10.1016/S0005-7894(02)80039-9

Leary, M. R., Patton, K. M., Orlando, E., and Funk, W. W. (2000). The impostor phenomenon:
self-perceptions, reflected appraisals, and interpersonal strategies. Journal of Personality, 68, 725–756.
https://doi.org/10.1111/1467-6494.00114

Lüdecke, D. (2022). sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.12,
https://CRAN.R-project.org/package=sjPlot

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., ... & Szabo, C. (2018).
Introductory programming: a systematic literature review. In Proceedings Companion of the 23rd
Annual ACM Conference on Innovation and Technology in Computer Science Education (pp. 55-106).
https://doi.org/10.1145/3293881.3295779

Lynn, P. (2018). Tackling panel attrition. The Palgrave handbook of survey research, 143-153.

Mak, K. K. L., Kleitman, S., & Abbott, M. J. (2019). Impostor phenomenon measurement scales: A
systematic review. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00671

Meyer, A. N., Zimmermann, T., & Fritz, T. (2017). Characterizing software developers by perceptions of
productivity. IESEM '17: Proceedings of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 105-110. https://doi.org/10.1109/ESEM.2017.17

Meyer, A. N., Barr, E. T., Bird, C., & Zimmermann, T. (2019). Today was a good day: The daily life of software
developers. IEEE Transactions on Software Engineering, 47(5), 863-880.
https://doi.org/10.1109/TSE.2019.2904957

Meyer, A. N., Murphy, G. C., Zimmermann, T., & Fritz, T. (2019). Enabling good work habits in software
developers through reflective goal-setting. IEEE Transactions on Software Engineering, 47(9),
1872-1885. https://doi.org/10.1109/TSE.2019.2938525.

Mikkonen, T. (2016). Flow, intrinsic motivation, and developer experience in software engineering. Agile
Processes in Software Engineering and Extreme Programming, 104.

Morales, J., Rusu, C., Botella, F., & Quiñones, D. (2019). Programmer eXperience: A systematic literature
review. IEEE Access, 7, 71079-71094.

O'Flaherty, S., Mitchel, C., Sanders, M., Walker, E., Unger, D., Wilans, A., & Daniels, K. (2022). Happier,
Healthier Professionals: Phase Two: RCTs and Pilots Conducted with Public Sector Workforces. What
Works Centre for Children's Social Care.
https://ueaeprints.uea.ac.uk/id/eprint/83176/1/Published_Version.pdf

Pardede, S., Gausel, N., Høie, M. M. (2021). Revisiting the “The Breakfast Club”: Testing different
theoretical models of belongingness and acceptance (and social self-representation). Frontiers in
Psychology, 11. https://doi.org/10.3389/fpsyg.2020.604090

Petre, M. (2009). Insights from expert software design practice. Proceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, 233-242, https://doi.org/10.1145/1595696.1595731

55

https://doi.org/10.1111/1467-6494.00114
https://cran.r-project.org/package=sjPlot
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.3389/fpsyg.2019.00671
https://doi.org/10.1109/ESEM.2017.17
https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/TSE.2019.2938525
https://ueaeprints.uea.ac.uk/id/eprint/83176/1/Published_Version.pdf
https://doi.org/10.3389/fpsyg.2020.604090
https://doi.org/10.1145/1595696.1595731

Quadlin, N. (2018). The mark of a woman’s record: Gender and academic performance in hiring.
American Sociological Review, 83(2), 331-360, https://doi.org/10.1177/0003122418762

Rattan, A., Savani, K., Komarraju, M., Morrison, M. M., Boggs, C., & Ambady, N. (2018). Meta-lay theories of
scientific potential drive underrepresented students’ sense of belonging to science, technology,
engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 115(1), 54.
https://psycnet.apa.org/doi/10.1037/pspi0000130

Reel, J. S. (1999). Critical success factors in software projects. IEEE software, 16(3), 18-23.
https://doi.org/https://doi.org/10.1109/52.765782

Roberson, L., & Kulik, C. T. (2007). Stereotype threat at work. Academy of Management Perspectives,
21(2), 24-40.

Robinson, K. A., Lee, Y.-k., Bovee, E. A., Perez, T., Walton, S. P., Briedis, D., & Linnenbrink-Garcia, L. (2019).
Motivation in transition: Development and roles of expectancy, task values, and costs in early college
engineering. Journal of Educational Psychology, 111(6), 1081–1102. https://doi.org/10.1037/edu0000331

Rodríguez-Pérez, G., Nadri, R., & Nagappan, M. (2021). Perceived diversity in software engineering: a
systematic literature review. Empirical Software Engineering, 26, 1-38.
https://doi.org/10.1007/s10664-021-09992-2

Roemer, L. & Orsillo, S. M. (2009). Mindfulness- and acceptance-based behavioral therapies in practice.
New York, NY: Guilford Press.

Roller, M. R. & Lavrakas, P. J. (2015). Applied qualitative research design: A total quality framework
approach. Guilford Press.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software,
48(2), 1–36. https://doi.org/10.18637/jss.v048.i02

Sadowski, C., & Zimmermann, T. (2019). Rethinking productivity in software engineering. Springer
Nature.

Scott, M. J., & Ghinea, G. (2013). On the domain-specificity of mindsets: The relationship between
aptitude beliefs and programming practice. IEEE Transactions on Education, 57(3), 169-174.
http://dx.doi.org/10.1109/TE.2013.2288700

Sherer, M., Maddux, J. E., Mercandante, B., Prentice-Dunn, S., Jacobs, B., & Rogers, R. W. (1982). The
self-efficacy scale: Construction and validation. Psychological reports, 51(2), 663-671.
https://psycnet.apa.org/doi/10.2466/pr0.1982.51.2.663

Simard, C., Henderson, A., Gilmartin, S., Schiebinger, L., Whitney, T., (2008). Climbing the technical
ladder: Obstacles and solutions for mid-career women in tech.
https://gender.stanford.edu/publications/climbing-technical-ladder-obstacles-and-solutions-mid-level-
women-technology

Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women's math performance.
Journal of Experimental Social Psychology, 35(1), 4–28. https://doi.org/10.1006/jesp.1998.1373

56

https://doi.org/10.1177/0003122418762291
https://psycnet.apa.org/doi/10.1037/pspi0000130
https://doi.org/https://doi.org/10.1109/52.765782
https://doi.org/10.1037/edu0000331
https://doi.org/10.1007/s10664-021-09992-2
https://doi.org/10.18637/jss.v048.i02
http://dx.doi.org/10.1109/TE.2013.2288700
https://psycnet.apa.org/doi/10.2466/pr0.1982.51.2.663
https://gender.stanford.edu/publications/climbing-technical-ladder-obstacles-and-solutions-mid-level-women-technology
https://gender.stanford.edu/publications/climbing-technical-ladder-obstacles-and-solutions-mid-level-women-technology
https://doi.org/10.1006/jesp.1998.1373

Stecker, T., McGovern, M. P., & Herr, B. (2012). An intervention to increase alcohol treatment
engagement: A pilot trial. Journal of Substance Abuse Treatment, 43(2), 161-167.
https://doi.org/10.1016/j.jsat.2011.10.028

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African
Americans. Journal of Personality and Social Psychology, 69(5), 797–811.
https://doi.org/10.1037/0022-3514.69.5.797

Storey, M. A., Zimmermann, T., Bird, C., Czerwonka, J., Murphy, B. & Kalliamvakou, E. (2021). Towards a
theory of software developer job satisfaction and perceived productivity. IEEE Transactions on Software
Engineering, 47(10), 2125–2142. https://doi/org/10.1109/TSE.2019.2944354

Storey, M. A., Houck, B., & Zimmermann, T. (2022). How developers and managers define and trade
productivity for quality. CHASE ‘22: Proceedings of the 15th International Conference on Cooperative
and Human Aspects of Software Engineering, 26-35. https://doi.org/10.1145/3528579.3529177

Verner, J., Sampson, J., & Cerpa, N. (2008). What factors lead to software project failure?. 2008 second
international conference on research challenges in information science, 71-80.
https://doi.org/10.1109/RCIS.2008.4632095

Wadsworth, L. P., Morgan, L. P., Hayes-Skelton, S. A., Roemer, L., & Suyemoto, K. L. (2016). Ways to Boost
Your Research Rigor Through Increasing Your Cultural Competence. The Behavior Therapist, 39, 76-92.

Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A technology acceptance
model (TAM) perspective. Information & Management, 51(2), 249-259.
https://doi.org/10.1016/j.im.2013.12.003

Wang, H. L. (2023). New 'Latino' and 'Middle Eastern or North African' checkboxes proposed for U.S.
forms. NPR: All Things Considered. Retrieved February 15, 2023 from:
https://www.npr.org/2023/01/26/1151608403/mena-race-categories-us-census-middle-eastern-latino-his
panic

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686,
https://doi.org/10.21105/joss.01686

Wilke, C. O., & Wiernik, B. M. (2022). R Package ggtext: Improved Text Rendering Support for 'ggplot2'.
https://wilkelab.org/ggtext/

Wilson, D. M., Bell, P., Jones, D., & Hansen, L. (2010). A cross-sectional study of belonging in engineering
communities. The International Journal of Engineering Education, 26(3), 687-698.

Yeager, D., Walton, G., & Cohen, G. L. (2013). Addressing achievement gaps with psychological
interventions. Phi Delta Kappan, 94(5), 62-65. http://dx.doi.org/10.1177/003172171309400514

Zingaro, D. (2015). Examining interest and grades in Computer Science 1: a study of pedagogy and
achievement goals. ACM Transactions on Computing Education (TOCE), 15(3), 1-18.
https://doi.org/10.1145/2802752

57

https://doi.org/10.1016/j.jsat.2011.10.028
https://doi.org/10.1037/0022-3514.69.5.797
https://doi/org/10.1109/TSE.2019.2944354
https://doi.org/10.1145/3528579.3529177
https://doi.org/10.1109/RCIS.2008.4632095
https://doi.org/10.1016/j.im.2013.12.003
https://www.npr.org/2023/01/26/1151608403/mena-race-categories-us-census-middle-eastern-latino-hispanic
https://www.npr.org/2023/01/26/1151608403/mena-race-categories-us-census-middle-eastern-latino-hispanic
https://doi.org/10.21105/joss.01686
https://wilkelab.org/ggtext/
http://dx.doi.org/10.1177/003172171309400514
https://doi.org/10.1145/2802752

Supplemental Materials

APPENDIX A. Sample Participant Consent Form

Developer Success Lab
This survey is from the Developer Success Lab at Flow. We are interested in learning more about developers at
work. This survey is a part of our ongoing research. By participating in this survey, you are giving consent for us to
use your survey responses in our ongoing research, including public reports, white papers, and conference
presentations. Please read this consent form carefully to ensure you understand how your data will be used.

It is important to know that there are no wrong or right answers on this survey. Our research team is interested in
hearing your most authentic answers to any question.

Participant data & analysis
The Developer Success Lab cares deeply about participant privacy. Your responses on this survey will be analyzed
only by our researchers. In order to learn from this data, researchers will have access to everything that you share
on this survey. Please do not share anything you do not wish to share with our research team.

Findings
Our research is communicated to an external audience as part of Flow's contributions to the tech community,
where we believe research findings can benefit developers and their teams (for example, conference
presentations, public white papers). When we share research, all findings will be anonymized, removing any
names or specific team contexts. Quantitative insights will be summarized in aggregate as part of a large
research report. For example, we may share statements like: "10% of respondents agreed that..."

Any quotes and text responses that you give as a part of this research may also be shared in our external reports
and may be quoted directly. We will anonymize all quotes, removing any specific mention of teams, names, or
contexts that might be personally identifiable. Where necessary, we may provide anonymized contextual details
(for example, "a senior engineer working primarily on backend team noted that....").

Questions, Concerns, and Opt-out.
While we hope that you will enjoy completing this survey and sharing your insights with us, you may choose to
leave this survey at any time. You may also leave any questions blank that you do not wish to answer.

If you have any questions or concerns you can reach out to the Developer Success Lab directly [EMAIL]

58

APPENDIX B. Asking about Identity

We chose to ask about demographic information such as race, gender, and sexual orientation
to better describe, represent, and contextualize our participants. Although these categories
do not fully capture the complexities of each individual’s experience, they were an attempt to
reflect the diversity of people’s identities. Participants were also reminded that they could skip
items they did not feel comfortable answering.

Racial Identity
When asking about racial identity, we chose to utilize a “check all that apply” approach that
included a free-text response option. This approach creates some structure for coding
purposes, while providing participants greater freedom in how they identify. While a case
could be made that simply providing the options of “multiracial/biracial” is sufficient, we
wanted to reflect that the biracial and multiracial experiences are distinct and may not
encompass how participants are racialized (Wadsworth et al., 2016). That is, people may
identify as holding multiple racial identities, but not necessarily identify as “multiracial.”

We also asked participants about their “racial/ethnic” identity. While racial identity is distinct
from ethnicity, we chose to include ethnicity in order to capture ethnicities that have been
racialized (e.g. Native Hawaiian).

Additionally, we split our racial categories of “Latinx/Hispanic” and “Middle Eastern/ North
African” into subcategories of “white” and “non-white.” This was to allow space for individuals
who may be racialized as white by others (and are typically forced to identify as white in
national census data; Wang, 2023), but are systemically minoritized based on factors such as
cultural practices, appearance of family members, and name.

Racial Identity Question

[OPTIONAL] Which group(s) below most accurately describes your racial/ethnic background? (check
all that apply)

Alaskan Native/Native American/Indigenous
Black/African American
East Asian
Middle Eastern/North African (Non-White)
Middle Eastern/North African (White)
Latinx/Hispanic (Non-White)
Latinx/Hispanic (White)
Pacific Islander/Native Hawaiian
South/South-East Asian
White
Multiracial
I would like to self-identify: ________

59

Prefer not to answer

Finally, throughout the report, we used the term “racially minoritized.” The use of this term is
consistent with best practices in social science research and best reflects the systemic ways in
which people are treated as inferior or deficit based on the way they are racialized by others,
despite being the global majority. We chose not to use the term “marginalized,” as it can
imply a deficit narrative and can be stigmatizing. We also chose not to use the term
“under-represented,” because it ignores the experiences of those who may be
well-represented in tech, yet be systemically and socially minoritized by others. Finally, we
opted not to use the term “people of color,” as it has been historically viewed as inaccessible to
Native/Indigenous, Asian, and Latinx-identifying individuals.

Gender Identity and Sexual Orientation
We chose to ask about gender and transgender identity separately. This “two-step” approach
was intentional and is the current recommended approach for asking about gender identity
(Kronk et al., 2022). This approach also avoids asking individuals to “qualify” gender identity
(e.g. forcing a choice between “transgender woman” and “woman”), which is not only
inaccurate, but stigmatizing. This approach also further avoids conflating gender and sex
assigned at birth (Lagos & Compton, 2021). We asked about transgender identity to reflect and
acknowledge the additional barriers gender minorities face in the workplace.

We asked about sexual orientation using a “check all that apply” approach that included a
free-text response option. This approach was to better reflect the fluid nature of sexual
orientation.

Gender Identity Questions

[OPTIONAL] Gender:
Male
Female
Nonbinary/Fluid/Queer/Gender Queer;
I would like to self-identify: ________
Prefer not to answer

[OPTIONAL] Do you identify as transgender?
Yes
No
Prefer not to answer

Sexual Orientation Question

60

[OPTIONAL] Which group(s) below most accurately describes your racial/ethnic background? (check
all that apply)

Asexual/ Aromantic
Bisexual
Fluid
Gay
Lesbian
Pansexual
Queer
Questioning or unsure
Straight/ Heterosexual
I would like to self-identify: ________

Prefer not to answer

61

APPENDIX C. Example Qualitative Script

Interviews and focus groups were both semi-structured conversations: this means that we
use a set of scripted questions, but allow for dialogue with participants, who can share
tangents, observations, and unexpected topics as they arise in the course of participants’
reflection. That means that researchers used the following example questions as initiating
items, but researchers asked natural follow-up questions and probed (e.g., “can you help me
understand [x]” or “when you experienced [x], can you describe whether that changed how
you worked…”).

Initiating Questions

Topic Questions

Defining Success &
Performance

How do you define “success”?
If your manager says you were “successful” what does that mean/
look like?
How does your team measure success?
Are there parts of software projects that are harder to measure?
How do you see what your colleagues are working on
When I say software metrics, what does that mean to you

Has there ever been a time when you've had to align with your
manager on performance metrics (i.e. misunderstanding, needing
clarification, changing scope)?
What prompted that alignment conversation?
What was the result of that conversion? (Short term/long term)
Did you feel that the conversation affected your motivation? If so,
how?
Did you feel that conversation affected your perception of your
performance? If so, how?

Collaboration

What is the role of “collaboration” in your world?

Can you walk me through a time when you had to “collaborate”
while on the job?

One of the things we’ve heard people mention is that feeling like
your managers really SEES and UNDERSTANDS your technical work
in code can be super important to feeling successful as a developer.”
Does this resonate with you? Are there ways you don’t agree?

Can you tell me about a time your workflow changed as a result of
someone really seeing and understanding your work?

62

Something we’ve heard from developers is the importance of being
able to experiment and iterate when they’re writing code.
Sometimes we’ve also heard that if developers don’t feel very “safe”
on a team, they find it hard to do this. Does this resonate with you?

Safety Are there ways you don’t agree?

Can you tell me about a time your workflow changed as a result of
someone making you feel safe?

APPENDIX D. Additional statistics

Productivity between industries. In our main analysis in Study 1, we explored Productivity
across all developers in our study. Looking specifically within the top four industries in our
study, the relationship between the Developer Thriving Measures and developers’ Productivity
remained significant and positive. However, between industries, developers reported differing
levels of productivity. This is not surprising, due to the different circumstances, technology
resources, and likely distributions of types of engineering work in these industries. Future
research should continue to explore developer productivity within industries, particularly to
better understand the experience of software teams outside of large technology companies.

Fig 15. Relations between Developer Thriving Productivity across industries
Overall descriptives of key measures & item analysis. In the tables below, we show
descriptive statistics from our quantitative survey, as well as the full details for the Serial
Mediation Model reported in Study 1. Because of the limitations of running a public-facing
survey at scale, and in order to prioritize participants’ ability and willingness to complete a
large survey, the Developer Thriving Scale presented an abbreviated set of subscales for each

63

construct. This challenge is common in applied research (e.g., Lynn, 2018). Future research can
build on these subscales with techniques to increase the depth of measurement (e.g.,
surveying with a larger subscale for each construct to create more statistically reliable
subscales) as well as breadth (e.g., surveying over time using within-group repeated
measures, to better capture the stability or variability in these aspects of developer experience
and behavior).

Overall Descriptives of Key Measures

Variable Mean
(SD) Skewness Kurtosis HMU VVQ DSS PPR

HMU
n = 958

1.23
(0.52) 0.03 -1.15 1.00 – – –

VVQ
n = 821

3.99
(0.91) -0.86 .27 .33* 1.00 – –

DTS
n = 562

4.26
(0.61) -0.83 0.81 .34* .73* 1.00 –

PPR
n = 1280

3.45
(0.92) -0.28 0.04 .26* .41* .43* 1.00

Note. HMU = Healthy Metrics Use; VVQ = Visibility and Value Questionnaire; DTS = Developer Thriving Scale; PPR =
Perceived Productivity Rating.
*p < .001

64

Serial Mediation Model

Consequent

VVQ (m1) DTS (m2) PPR (y)

Antecedent 𝛽 p 𝛽 p 𝛽 p

Direct Effects

% Time Code
(cov1) 0.12 < .01 0.13 < .001 0.05 0.21

Years Code
(cov2) 0.17 < .001 0.05 0.15 0.16 < .001

HMU (x) 0.32 < .001 0.12 < .01 0.13 < .01

VVQ (m1) — — 0.65 < .001 0.14 < .05

DTS (m2) — — — — 0.24 < .001

Indirect Effects

HMU (x) via
VVQ (m1)

TMU (x) via
DTS (m2)

VVQ (m1) via
DTS (m2)

TMU (x) via
VVQ (m1) and
DTS (m2)

— — 0.21 < .001 0.04 < .05

— — — — 0.03 .001

— — — — 0.16 < .001

— — — — 0.05 0.001

Note. VVQ = Visibility and Value Questionnaire, DTS = Developer Thriving Scale, PPR = Perceived Productivity Rating,
% Time Code = Percent of time spent coding, Years Code = Years of coding experience, HMU = Healthy Metrics Use,
cov1 = covariate 1, cov2 = covariate 2, x = predictor variable, m1 = mediator 1, m2 = mediator 2, y = outcome variable

65

Subgroup differences on the IMCW. In Study 3, we explored whether there was evidence for
differences in any of the subgroups we observed across our demographic and firmographic
characteristics. As reported in the summary of Study 3, Racially Minoritized Developers
showed a statistically significant difference on this outcome measure, reporting overall higher
agreement with the Impact of Measuring Coding Work. We caution, as in Study 3, that this is
an exploratory finding, and that we were unable to explore this question with our full survey
sample. We recommend further research that explores this potential difference.

Figure 16. Coefficient estimates for subgroup differences on the impact of coding work
measure.

66

IMCW Model

Characteristic 𝛽 95% CI1 p-value

Engineering Role

Backend — —

Frontend 0.40 -0.18, 0.98 0.2

Full Stack -0.07 -0.40, 0.25 0.6

Top Industries

Financial Services — —

Government -0.32 -0.98, 0.34 0.3

Retail/ Consumer/ e-Commerce -0.40 -0.96, 0.16 0.2

Technology -0.10 -0.45, 0.25 0.6

Team Size 0.00 -0.02, 0.03 0.9

Team Type

Different Manager -0.56 -1.1, 0.02 0.057

Same Manager -0.14 -0.65, 0.38 0.6

Gender

Female — —

Male 0.14 -0.28, 0.55 0.5

Prefer not to answer 0.59 -0.33, 1.5 0.2

Education Completed

4-year College — —

Graduate Degree 0.04 -0.29, 0.38 0.8

Some College -0.18 -0.76, 0.41 0.6

Years Coding 0.00 -0.02, 0.01 0.8

Racially Minoritized Status

Non-racially Minoritized Developer — —

Racially Minoritized Developer 0.73 0.39, 1.1 <0.001

LGBTQ Status

Non-LGBTQ+ Developer — —

LGBTQ+ Developer -0.13 -0.49, 0.23 0.5

Note. 1CI = Confidence Interval

67

